IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19298-4.html
   My bibliography  Save this article

Slim-panel holographic video display

Author

Listed:
  • Jungkwuen An

    (Samsung Electronics)

  • Kanghee Won

    (Samsung Electronics)

  • Young Kim

    (Samsung Electronics)

  • Jong-Young Hong

    (Samsung Electronics)

  • Hojung Kim

    (Samsung Electronics)

  • Yongkyu Kim

    (Samsung Electronics)

  • Hoon Song

    (Samsung Electronics)

  • Chilsung Choi

    (Samsung Electronics)

  • Yunhee Kim

    (Samsung Electronics)

  • Juwon Seo

    (Samsung Electronics)

  • Alexander Morozov

    (SRR, 12)

  • Hyunsik Park

    (University of Seoul)

  • Sunghoon Hong

    (Samsung Electronics)

  • Sungwoo Hwang

    (Samsung Electronics)

  • Kichul Kim

    (University of Seoul)

  • Hong-Seok Lee

    (Samsung Electronics)

Abstract

Since its discovery almost 70 years ago, the hologram has been considered to reproduce the most realistic three dimensional images without visual side effects. Holographic video has been extensively researched for commercialization, since Benton et al. at MIT Media Lab developed the first holographic video systems in 1990. However, commercially available holographic video displays have not been introduced yet for several reasons: narrow viewing angle, bulky optics and heavy computing power. Here we present an interactive slim-panel holographic video display using a steering-backlight unit and a holographic video processor to solve the above issues. The steering-backlight unit enables to expand the viewing angle by 30 times and its diffractive waveguide architecture makes a slim display form-factor. The holographic video processor computes high quality holograms in real-time on a single-chip. We suggest that the slim-panel holographic display can provide realistic three-dimensional video in office and household environments.

Suggested Citation

  • Jungkwuen An & Kanghee Won & Young Kim & Jong-Young Hong & Hojung Kim & Yongkyu Kim & Hoon Song & Chilsung Choi & Yunhee Kim & Juwon Seo & Alexander Morozov & Hyunsik Park & Sunghoon Hong & Sungwoo Hw, 2020. "Slim-panel holographic video display," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19298-4
    DOI: 10.1038/s41467-020-19298-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19298-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19298-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changwon Jang & Kiseung Bang & Minseok Chae & Byoungho Lee & Douglas Lanman, 2024. "Waveguide holography for 3D augmented reality glasses," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Hyounghan Kwon & Tianzhe Zheng & Andrei Faraon, 2022. "Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Hyeonseung Yu & Youngrok Kim & Daeho Yang & Wontaek Seo & Yunhee Kim & Jong-Young Hong & Hoon Song & Geeyoung Sung & Younghun Sung & Sung-Wook Min & Hong-Seok Lee, 2023. "Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19298-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.