IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19280-0.html
   My bibliography  Save this article

Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production

Author

Listed:
  • Tianpei Li

    (University of Liverpool
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Henan University)

  • Qiuyao Jiang

    (University of Liverpool)

  • Jiafeng Huang

    (University of Liverpool
    Central South University)

  • Catherine M. Aitchison

    (University of Liverpool)

  • Fang Huang

    (University of Liverpool)

  • Mengru Yang

    (University of Liverpool)

  • Gregory F. Dykes

    (University of Liverpool)

  • Hai-Lun He

    (Central South University)

  • Qiang Wang

    (Henan University
    Chinese Academy of Sciences)

  • Reiner Sebastian Sprick

    (University of Liverpool)

  • Andrew I. Cooper

    (University of Liverpool)

  • Lu-Ning Liu

    (University of Liverpool
    Ocean University of China)

Abstract

Compartmentalization is a ubiquitous building principle in cells, which permits segregation of biological elements and reactions. The carboxysome is a specialized bacterial organelle that encapsulates enzymes into a virus-like protein shell and plays essential roles in photosynthetic carbon fixation. The naturally designed architecture, semi-permeability, and catalytic improvement of carboxysomes have inspired rational design and engineering of new nanomaterials to incorporate desired enzymes into the protein shell for enhanced catalytic performance. Here, we build large, intact carboxysome shells (over 90 nm in diameter) in the industrial microorganism Escherichia coli by expressing a set of carboxysome protein-encoding genes. We develop strategies for enzyme activation, shell self-assembly, and cargo encapsulation to construct a robust nanoreactor that incorporates catalytically active [FeFe]-hydrogenases and functional partners within the empty shell for the production of hydrogen. We show that shell encapsulation and the internal microenvironment of the new catalyst facilitate hydrogen production of the encapsulated oxygen-sensitive hydrogenases. The study provides insights into the assembly and formation of carboxysomes and paves the way for engineering carboxysome shell-based nanoreactors to recruit specific enzymes for diverse catalytic reactions.

Suggested Citation

  • Tianpei Li & Qiuyao Jiang & Jiafeng Huang & Catherine M. Aitchison & Fang Huang & Mengru Yang & Gregory F. Dykes & Hai-Lun He & Qiang Wang & Reiner Sebastian Sprick & Andrew I. Cooper & Lu-Ning Liu, 2020. "Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19280-0
    DOI: 10.1038/s41467-020-19280-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19280-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19280-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taiyu Chen & Marta Hojka & Philip Davey & Yaqi Sun & Gregory F. Dykes & Fei Zhou & Tracy Lawson & Peter J. Nixon & Yongjun Lin & Lu-Ning Liu, 2023. "Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Mengru Yang & Nicolas Wenner & Gregory F. Dykes & Yan Li & Xiaojun Zhu & Yaqi Sun & Fang Huang & Jay C. D. Hinton & Lu-Ning Liu, 2022. "Biogenesis of a bacterial metabolosome for propanediol utilization," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Tao Ni & Yaqi Sun & Will Burn & Monsour M. J. Al-Hazeem & Yanan Zhu & Xiulian Yu & Lu-Ning Liu & Peijun Zhang, 2022. "Structure and assembly of cargo Rubisco in two native α-carboxysomes," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Tao Ni & Qiuyao Jiang & Pei Cing Ng & Juan Shen & Hao Dou & Yanan Zhu & Julika Radecke & Gregory F. Dykes & Fang Huang & Lu-Ning Liu & Peijun Zhang, 2023. "Intrinsically disordered CsoS2 acts as a general molecular thread for α-carboxysome shell assembly," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19280-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.