IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17343-w.html
   My bibliography  Save this article

Global reward state affects learning and activity in raphe nucleus and anterior insula in monkeys

Author

Listed:
  • Marco K. Wittmann

    (University of Oxford)

  • Elsa Fouragnan

    (University of Oxford
    University of Plymouth)

  • Davide Folloni

    (University of Oxford)

  • Miriam C. Klein-Flügge

    (University of Oxford)

  • Bolton K. H. Chau

    (The Hong Kong Polytechnic University)

  • Mehdi Khamassi

    (Sorbonne Université, CNRS, Institute of Intelligent Systems and Robotics)

  • Matthew F. S. Rushworth

    (University of Oxford
    University of Oxford)

Abstract

People and other animals learn the values of choices by observing the contingencies between them and their outcomes. However, decisions are not guided by choice-linked reward associations alone; macaques also maintain a memory of the general, average reward rate – the global reward state – in an environment. Remarkably, global reward state affects the way that each choice outcome is valued and influences future decisions so that the impact of both choice success and failure is different in rich and poor environments. Successful choices are more likely to be repeated but this is especially the case in rich environments. Unsuccessful choices are more likely to be abandoned but this is especially likely in poor environments. Functional magnetic resonance imaging (fMRI) revealed two distinct patterns of activity, one in anterior insula and one in the dorsal raphe nucleus, that track global reward state as well as specific outcome events.

Suggested Citation

  • Marco K. Wittmann & Elsa Fouragnan & Davide Folloni & Miriam C. Klein-Flügge & Bolton K. H. Chau & Mehdi Khamassi & Matthew F. S. Rushworth, 2020. "Global reward state affects learning and activity in raphe nucleus and anterior insula in monkeys," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17343-w
    DOI: 10.1038/s41467-020-17343-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17343-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17343-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colin W. Hoy & David R. Quiroga-Martinez & Eduardo Sandoval & David King-Stephens & Kenneth D. Laxer & Peter Weber & Jack J. Lin & Robert T. Knight, 2023. "Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Ethan Trepka & Mehran Spitmaan & Bilal A. Bari & Vincent D. Costa & Jeremiah Y. Cohen & Alireza Soltani, 2021. "Entropy-based metrics for predicting choice behavior based on local response to reward," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Ruth Pauli & Inti A. Brazil & Gregor Kohls & Miriam C. Klein-Flügge & Jack C. Rogers & Dimitris Dikeos & Roberta Dochnal & Graeme Fairchild & Aranzazu Fernández-Rivas & Beate Herpertz-Dahlmann & Amaia, 2023. "Action initiation and punishment learning differ from childhood to adolescence while reward learning remains stable," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Elsa F. Fouragnan & Billy Hosking & Yin Cheung & Brooke Prakash & Matthew Rushworth & Alejandra Sel, 2024. "Timing along the cardiac cycle modulates neural signals of reward-based learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Patricia L. Lockwood & Jo Cutler & Daniel Drew & Ayat Abdurahman & Deva Sanjeeva Jeyaretna & Matthew A. J. Apps & Masud Husain & Sanjay G. Manohar, 2024. "Human ventromedial prefrontal cortex is necessary for prosocial motivation," Nature Human Behaviour, Nature, vol. 8(7), pages 1403-1416, July.
    6. A. Calapai & J. Cabrera-Moreno & T. Moser & M. Jeschke, 2022. "Flexible auditory training, psychophysics, and enrichment of common marmosets with an automated, touchscreen-based system," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17343-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.