IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16924-z.html
   My bibliography  Save this article

Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging

Author

Listed:
  • Benhao Li

    (Fudan University)

  • Mengyao Zhao

    (Fudan University)

  • Lishuai Feng

    (Shanghai Jiao Tong University Affiliated Sixth People’s Hospital)

  • Chaoran Dou

    (Shanghai Jiao Tong University Affiliated Sixth People’s Hospital)

  • Suwan Ding

    (Fudan University)

  • Gang Zhou

    (Fudan University)

  • Lingfei Lu

    (Fudan University)

  • Hongxin Zhang

    (Fudan University)

  • Feiya Chen

    (Fudan University)

  • Xiaomin Li

    (Fudan University)

  • Guangfeng Li

    (Fudan University)

  • Shichang Zhao

    (Shanghai Jiao Tong University)

  • Chunyu Jiang

    (Shanghai Jiao Tong University Affiliated Sixth People’s Hospital)

  • Yan Wang

    (Shanghai Jiao Tong University Affiliated Sixth People’s Hospital)

  • Dongyuan Zhao

    (Fudan University)

  • Yingsheng Cheng

    (Shanghai Jiao Tong University Affiliated Sixth People’s Hospital)

  • Fan Zhang

    (Fudan University)

Abstract

Real-time monitoring of vessel dysfunction is of great significance in preclinical research. Optical bioimaging in the second near-infrared (NIR-II) window provides advantages including high resolution and fast feedback. However, the reported molecular dyes are hampered by limited blood circulation time (~ 5–60 min) and short absorption and emission wavelength, which impede the accurate long-term monitoring. Here, we report a NIR-II molecule (LZ-1105) with absorption and emission beyond 1000 nm. Thanks to the long blood circulation time (half-life of 3.2 h), the fluorophore is used for continuous real-time monitoring of dynamic vascular processes, including ischemic reperfusion in hindlimbs, thrombolysis in carotid artery and opening and recovery of the blood brain barrier (BBB). LZ-1105 provides an approach for researchers to assess vessel dysfunction due to the long excitation and emission wavelength and long-term blood circulation properties.

Suggested Citation

  • Benhao Li & Mengyao Zhao & Lishuai Feng & Chaoran Dou & Suwan Ding & Gang Zhou & Lingfei Lu & Hongxin Zhang & Feiya Chen & Xiaomin Li & Guangfeng Li & Shichang Zhao & Chunyu Jiang & Yan Wang & Dongyua, 2020. "Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16924-z
    DOI: 10.1038/s41467-020-16924-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16924-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16924-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Mi & Xun Zhang & Chengyu Yang & Jianqun Wu & Xinxin Chen & Chenguang Ma & Sitong Wu & Zhichao Yang & Pengzhen Qiao & Yang Liu & Weijie Wu & Zhiyong Guo & Jiayan Liao & Jiajia Zhou & Ming Guan & C, 2023. "Bone disease imaging through the near-infrared-II window," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Dongya Zhang & Sidan Tian & Yanjie Liu & Meng Zheng & Xiangliang Yang & Yan Zou & Bingyang Shi & Liang Luo, 2022. "Near infrared-activatable biomimetic nanogels enabling deep tumor drug penetration inhibit orthotopic glioblastoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Jiajun Xu & Ningning Zhu & Yijing Du & Tianyang Han & Xue Zheng & Jia Li & Shoujun Zhu, 2024. "Biomimetic NIR-II fluorescent proteins created from chemogenic protein-seeking dyes for multicolor deep-tissue bioimaging," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Rui Tian & Xin Feng & Long Wei & Daoguo Dai & Ying Ma & Haifeng Pan & Shengxiang Ge & Lang Bai & Chaomin Ke & Yanlin Liu & Lixin Lang & Shoujun Zhu & Haitao Sun & Yanbao Yu & Xiaoyuan Chen, 2022. "A genetic engineering strategy for editing near-infrared-II fluorophores," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16924-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.