IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16291-9.html
   My bibliography  Save this article

Purely in-plane ferroelectricity in monolayer SnS at room temperature

Author

Listed:
  • Naoki Higashitarumizu

    (The University of Tokyo)

  • Hayami Kawamoto

    (The University of Tokyo)

  • Chien-Ju Lee

    (National Chiao Tung University)

  • Bo-Han Lin

    (National Chiao Tung University)

  • Fu-Hsien Chu

    (National Chiao Tung University)

  • Itsuki Yonemori

    (Kwansei Gakuin University)

  • Tomonori Nishimura

    (The University of Tokyo)

  • Katsunori Wakabayashi

    (Kwansei Gakuin University)

  • Wen-Hao Chang

    (National Chiao Tung University
    National Chiao Tung University)

  • Kosuke Nagashio

    (The University of Tokyo)

Abstract

2D van der Waals ferroelectrics have emerged as an attractive building block with immense potential to provide multifunctionality in nanoelectronics. Although several accomplishments have been reported in ferroelectric switching for out-of-plane ferroelectrics down to the monolayer, a purely in-plane ferroelectric has not been experimentally validated at the monolayer thickness. Herein, an in-plane ferroelectricity is demonstrated for micrometer-size monolayer SnS at room temperature. SnS has been commonly regarded to exhibit the odd–even effect, where the centrosymmetry breaks only in the odd-number layers to exhibit ferroelectricity. Remarkably, however, a robust room temperature ferroelectricity exists in SnS below a critical thickness of 15 layers with both an odd and even number of layers, suggesting the possibility of controlling the stacking sequence of multilayer SnS beyond the limit of ferroelectricity in the monolayer. This work will pave the way for nanoscale ferroelectric applications based on SnS as a platform for in-plane ferroelectrics.

Suggested Citation

  • Naoki Higashitarumizu & Hayami Kawamoto & Chien-Ju Lee & Bo-Han Lin & Fu-Hsien Chu & Itsuki Yonemori & Tomonori Nishimura & Katsunori Wakabayashi & Wen-Hao Chang & Kosuke Nagashio, 2020. "Purely in-plane ferroelectricity in monolayer SnS at room temperature," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16291-9
    DOI: 10.1038/s41467-020-16291-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16291-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16291-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Yuan & Michele Kotiuga & Tae Joon Park & Ranjan Kumar Patel & Yuanyuan Ni & Arnob Saha & Hua Zhou & Jerzy T. Sadowski & Abdullah Al-Mahboob & Haoming Yu & Kai Du & Minning Zhu & Sunbin Deng & Ra, 2024. "Hydrogen-induced tunable remanent polarization in a perovskite nickelate," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Ruofan Du & Yuzhu Wang & Mo Cheng & Peng Wang & Hui Li & Wang Feng & Luying Song & Jianping Shi & Jun He, 2022. "Two-dimensional multiferroic material of metallic p-doped SnSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Wenhui Li & Xuanlin Zhang & Jia Yang & Song Zhou & Chuangye Song & Peng Cheng & Yi-Qi Zhang & Baojie Feng & Zhenxing Wang & Yunhao Lu & Kehui Wu & Lan Chen, 2023. "Emergence of ferroelectricity in a nonferroelectric monolayer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Ruirui Niu & Zhuoxian Li & Xiangyan Han & Zhuangzhuang Qu & Dongdong Ding & Zhiyu Wang & Qianling Liu & Tianyao Liu & Chunrui Han & Kenji Watanabe & Takashi Taniguchi & Menghao Wu & Qi Ren & Xueyun Wa, 2022. "Giant ferroelectric polarization in a bilayer graphene heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Yi Hu & Lukas Rogée & Weizhen Wang & Lyuchao Zhuang & Fangyi Shi & Hui Dong & Songhua Cai & Beng Kang Tay & Shu Ping Lau, 2023. "Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16291-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.