IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16274-w.html
   My bibliography  Save this article

Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels

Author

Listed:
  • Elizabeth L. Johnson

    (Max Planck Institute for Developmental Biology)

  • Stacey L. Heaver

    (Max Planck Institute for Developmental Biology)

  • Jillian L. Waters

    (Max Planck Institute for Developmental Biology)

  • Benjamin I. Kim

    (Columbia University)

  • Alexis Bretin

    (Georgia State University)

  • Andrew L. Goodman

    (Yale University School of Medicine)

  • Andrew T. Gewirtz

    (Georgia State University)

  • Tilla S. Worgall

    (Columbia University)

  • Ruth E. Ley

    (Max Planck Institute for Developmental Biology)

Abstract

Gut microbes are linked to host metabolism, but specific mechanisms remain to be uncovered. Ceramides, a type of sphingolipid (SL), have been implicated in the development of a range of metabolic disorders from insulin resistance (IR) to hepatic steatosis. SLs are obtained from the diet and generated by de novo synthesis in mammalian tissues. Another potential, but unexplored, source of mammalian SLs is production by Bacteroidetes, the dominant phylum of the gut microbiome. Genomes of Bacteroides spp. and their relatives encode serine palmitoyltransfease (SPT), allowing them to produce SLs. Here, we explore the contribution of SL-production by gut Bacteroides to host SL homeostasis. In human cell culture, bacterial SLs are processed by host SL-metabolic pathways. In mouse models, Bacteroides-derived lipids transfer to host epithelial tissue and the hepatic portal vein. Administration of B. thetaiotaomicron to mice, but not an SPT-deficient strain, reduces de novo SL production and increases liver ceramides. These results indicate that gut-derived bacterial SLs affect host lipid metabolism.

Suggested Citation

  • Elizabeth L. Johnson & Stacey L. Heaver & Jillian L. Waters & Benjamin I. Kim & Alexis Bretin & Andrew L. Goodman & Andrew T. Gewirtz & Tilla S. Worgall & Ruth E. Ley, 2020. "Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16274-w
    DOI: 10.1038/s41467-020-16274-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16274-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16274-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer T. Wolstenholme & Justin M. Saunders & Maren Smith & Jason D. Kang & Phillip B. Hylemon & Javier González-Maeso & Andrew Fagan & Derrick Zhao & Masoumeh Sikaroodi & Jeremy Herzog & Amirhossei, 2022. "Reduced alcohol preference and intake after fecal transplant in patients with alcohol use disorder is transmissible to germ-free mice," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Isaac G. Crusoe & Ian C. Chiwaya & Tasnim I. Habib, 2024. "Immune Control of Gut Microbiota Prevents Obesity and the Effect of Antibiotic on Microbial Population," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 1-9, May.
    3. Charlotte Ramon & Jörg Stelling, 2023. "Functional comparison of metabolic networks across species," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Rabindra K. Mandal & Anita Mandal & Joshua E. Denny & Ruth Namazii & Chandy C. John & Nathan W. Schmidt, 2023. "Gut Bacteroides act in a microbial consortium to cause susceptibility to severe malaria," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16274-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.