IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15677-z.html
   My bibliography  Save this article

Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production

Author

Listed:
  • Hanping Ding

    (Idaho National Laboratory)

  • Wei Wu

    (Idaho National Laboratory)

  • Chao Jiang

    (Idaho National Laboratory)

  • Yong Ding

    (Georgia Institute of Technology)

  • Wenjuan Bian

    (Idaho National Laboratory
    New Mexico State University)

  • Boxun Hu

    (University of Connecticut)

  • Prabhakar Singh

    (University of Connecticut)

  • Christopher J. Orme

    (Idaho National Laboratory)

  • Lucun Wang

    (Idaho National Laboratory)

  • Yunya Zhang

    (Idaho National Laboratory)

  • Dong Ding

    (Idaho National Laboratory)

Abstract

The protonic ceramic electrochemical cell (PCEC) is an emerging and attractive technology that converts energy between power and hydrogen using solid oxide proton conductors at intermediate temperatures. To achieve efficient electrochemical hydrogen and power production with stable operation, highly robust and durable electrodes are urgently desired to facilitate water oxidation and oxygen reduction reactions, which are the critical steps for both electrolysis and fuel cell operation, especially at reduced temperatures. In this study, a triple conducting oxide of PrNi0.5Co0.5O3-δ perovskite is developed as an oxygen electrode, presenting superior electrochemical performance at 400~600 °C. More importantly, the self-sustainable and reversible operation is successfully demonstrated by converting the generated hydrogen in electrolysis mode to electricity without any hydrogen addition. The excellent electrocatalytic activity is attributed to the considerable proton conduction, as confirmed by hydrogen permeation experiment, remarkable hydration behavior and computations.

Suggested Citation

  • Hanping Ding & Wei Wu & Chao Jiang & Yong Ding & Wenjuan Bian & Boxun Hu & Prabhakar Singh & Christopher J. Orme & Lucun Wang & Yunya Zhang & Dong Ding, 2020. "Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15677-z
    DOI: 10.1038/s41467-020-15677-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15677-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15677-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jadhav, Dipak A. & Park, Sung-Gwan & Eisa, Tasnim & Mungray, Arvind K. & Madenli, Evrim Celik & Olabi, Abdul-Ghani & Abdelkareem, Mohammad Ali & Chae, Kyu-Jung, 2022. "Current outlook towards feasibility and sustainability of ceramic membranes for practical scalable applications of microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Li, Zheng & Yu, Jie & Wang, Chen & Bello, Idris Temitope & Yu, Na & Chen, Xi & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "Multi-objective optimization of protonic ceramic electrolysis cells based on a deep neural network surrogate model," Applied Energy, Elsevier, vol. 365(C).
    3. Lei, Libin & Mo, Yingyu & Huang, Yue & Qiu, Ruiming & Tian, Zhipeng & Wang, Junyao & Liu, Jianping & Chen, Ying & Zhang, Jihao & Tao, Zetian & Liang, Bo & Wang, Chao, 2023. "Revealing and quantifying the role of oxygen-ionic current in proton-conducting solid oxide fuel cells: A modeling study," Energy, Elsevier, vol. 276(C).
    4. Kai Pei & Yucun Zhou & Kang Xu & Hua Zhang & Yong Ding & Bote Zhao & Wei Yuan & Kotaro Sasaki & YongMan Choi & Yu Chen & Meilin Liu, 2022. "Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Hizkia Manuel Vieri & Moo-Chang Kim & Arash Badakhsh & Sun Hee Choi, 2024. "Electrochemical Synthesis of Ammonia via Nitrogen Reduction and Oxygen Evolution Reactions—A Comprehensive Review on Electrolyte-Supported Cells," Energies, MDPI, vol. 17(2), pages 1-14, January.
    6. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15677-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.