IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15472-w.html
   My bibliography  Save this article

Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics

Author

Listed:
  • Vikrant J. Gokhale

    (National Research Council Fellow residing at the US Naval Research Laboratory)

  • Brian P. Downey

    (US Naval Research Laboratory)

  • D. Scott Katzer

    (US Naval Research Laboratory)

  • Neeraj Nepal

    (US Naval Research Laboratory)

  • Andrew C. Lang

    (American Society for Engineering Education Postdoctoral Fellow residing at the US Naval Research Laboratory)

  • Rhonda M. Stroud

    (US Naval Research Laboratory)

  • David J. Meyer

    (US Naval Research Laboratory)

Abstract

Solid-state quantum acoustodynamic (QAD) systems provide a compact platform for quantum information storage and processing by coupling acoustic phonon sources with superconducting or spin qubits. The multi-mode composite high-overtone bulk acoustic wave resonator (HBAR) is a popular phonon source well suited for QAD. However, scattering from defects, grain boundaries, and interfacial/surface roughness in the composite transducer severely limits the phonon relaxation time in sputter-deposited devices. Here, we grow an epitaxial-HBAR, consisting of a metallic NbN bottom electrode and a piezoelectric GaN film on a SiC substrate. The acoustic impedance-matched epi-HBAR has a power injection efficiency >99% from transducer to phonon cavity. The smooth interfaces and low defect density reduce phonon losses, yielding (f × Q) and phonon lifetimes up to 1.36 × 1017 Hz and 500 µs respectively. The GaN/NbN/SiC epi-HBAR is an electrically actuated, multi-mode phonon source that can be directly interfaced with NbN-based superconducting qubits or SiC-based spin qubits.

Suggested Citation

  • Vikrant J. Gokhale & Brian P. Downey & D. Scott Katzer & Neeraj Nepal & Andrew C. Lang & Rhonda M. Stroud & David J. Meyer, 2020. "Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15472-w
    DOI: 10.1038/s41467-020-15472-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15472-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15472-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Shao & Vikrant J. Gokhale & Bo Peng & Penghui Song & Jingjie Cheng & Justin Kuo & Amit Lal & Wen-Ming Zhang & Jason J. Gorman, 2022. "Femtometer-amplitude imaging of coherent super high frequency vibrations in micromechanical resonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Daehun Lee & Shahin Jahanbani & Jack Kramer & Ruochen Lu & Keji Lai, 2023. "Nanoscale imaging of super-high-frequency microelectromechanical resonators with femtometer sensitivity," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Hussein M. E. Hussein & Seunghwi Kim & Matteo Rinaldi & Andrea Alù & Cristian Cassella, 2024. "Passive frequency comb generation at radiofrequency for ranging applications," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15472-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.