Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-020-14848-2
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hao Tan & Bing Tang & Ying Lu & Qianqian Ji & Liyang Lv & Hengli Duan & Na Li & Yao Wang & Sihua Feng & Zhi Li & Chao Wang & Fengchun Hu & Zhihu Sun & Wensheng Yan, 2022. "Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Zengyao Wang & Jiyi Chen & Erhong Song & Ning Wang & Juncai Dong & Xiang Zhang & Pulickel M. Ajayan & Wei Yao & Chenfeng Wang & Jianjun Liu & Jianfeng Shen & Mingxin Ye, 2021. "Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Wanlin Zhou & Hui Su & Weiren Cheng & Yuanli Li & Jingjing Jiang & Meihuan Liu & Feifan Yu & Wei Wang & Shiqiang Wei & Qinghua Liu, 2022. "Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Ziqi Zhang & Zhe Zhang & Cailing Chen & Rui Wang & Minggang Xie & Sheng Wan & Ruige Zhang & Linchuan Cong & Haiyan Lu & Yu Han & Wei Xing & Zhan Shi & Shouhua Feng, 2024. "Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Zhenglong Fan & Fan Liao & Yujin Ji & Yang Liu & Hui Huang & Dan Wang & Kui Yin & Haiwei Yang & Mengjie Ma & Wenxiang Zhu & Meng Wang & Zhenhui Kang & Youyong Li & Mingwang Shao & Zhiwei Hu & Qi Shao, 2022. "Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Liangjun Chen & Guinan Chen & Chengtao Gong & Yifei Zhang & Zhihao Xing & Jiahao Li & Guodong Xu & Gao Li & Yongwu Peng, 2024. "Low-valence platinum single atoms in sulfur-containing covalent organic frameworks for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Hui Su & Wanlin Zhou & Wu Zhou & Yuanli Li & Lirong Zheng & Hui Zhang & Meihuan Liu & Xiuxiu Zhang & Xuan Sun & Yanzhi Xu & Fengchun Hu & Jing Zhang & Tiandou Hu & Qinghua Liu & Shiqiang Wei, 2021. "In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Junsic Cho & Taejung Lim & Haesol Kim & Ling Meng & Jinjong Kim & Seunghoon Lee & Jong Hoon Lee & Gwan Yeong Jung & Kug-Seung Lee & Francesc Viñes & Francesc Illas & Kai S. Exner & Sang Hoon Joo & Cha, 2023. "Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yanghang Pan & Xinzhu Wang & Weiyang Zhang & Lingyu Tang & Zhangyan Mu & Cheng Liu & Bailin Tian & Muchun Fei & Yamei Sun & Huanhuan Su & Libo Gao & Peng Wang & Xiangfeng Duan & Jing Ma & Mengning Din, 2022. "Boosting the performance of single-atom catalysts via external electric field polarization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14848-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.