IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14766-3.html
   My bibliography  Save this article

Trajectory-based differential expression analysis for single-cell sequencing data

Author

Listed:
  • Koen Van den Berge

    (Ghent University
    Ghent University
    University of California)

  • Hector Roux de Bézieux

    (University of California
    University of California)

  • Kelly Street

    (Dana-Farber Cancer Institute
    Harvard T.H. Chan School of Public Health)

  • Wouter Saelens

    (Ghent University
    VIB Center for Inflammation Research)

  • Robrecht Cannoodt

    (VIB Center for Inflammation Research
    Ghent University Hospital
    Ghent University)

  • Yvan Saeys

    (Ghent University
    VIB Center for Inflammation Research)

  • Sandrine Dudoit

    (University of California
    University of California
    University of California)

  • Lieven Clement

    (Ghent University
    Ghent University)

Abstract

Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression. Downstream of trajectory inference, it is vital to discover genes that are (i) associated with the lineages in the trajectory, or (ii) differentially expressed between lineages, to illuminate the underlying biological processes. Current data analysis procedures, however, either fail to exploit the continuous resolution provided by trajectory inference, or fail to pinpoint the exact types of differential expression. We introduce tradeSeq, a powerful generalized additive model framework based on the negative binomial distribution that allows flexible inference of both within-lineage and between-lineage differential expression. By incorporating observation-level weights, the model additionally allows to account for zero inflation. We evaluate the method on simulated datasets and on real datasets from droplet-based and full-length protocols, and show that it yields biological insights through a clear interpretation of the data.

Suggested Citation

  • Koen Van den Berge & Hector Roux de Bézieux & Kelly Street & Wouter Saelens & Robrecht Cannoodt & Yvan Saeys & Sandrine Dudoit & Lieven Clement, 2020. "Trajectory-based differential expression analysis for single-cell sequencing data," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14766-3
    DOI: 10.1038/s41467-020-14766-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14766-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14766-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefanie Kirchberger & Mohamed R. Shoeb & Daria Lazic & Andrea Wenninger-Weinzierl & Kristin Fischer & Lisa E. Shaw & Filomena Nogueira & Fikret Rifatbegovic & Eva Bozsaky & Ruth Ladenstein & Bernd Bo, 2024. "Comparative transcriptomics coupled to developmental grading via transgenic zebrafish reporter strains identifies conserved features in neutrophil maturation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Jeff DeMartino & Michael T. Meister & Lindy L. Visser & Mariël Brok & Marian J. A. Groot Koerkamp & Amber K. L. Wezenaar & Laura S. Hiemcke-Jiwa & Terezinha Souza & Johannes H. M. Merks & Anne C. Rios, 2023. "Single-cell transcriptomics reveals immune suppression and cell states predictive of patient outcomes in rhabdomyosarcoma," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Malosree Maitra & Haruka Mitsuhashi & Reza Rahimian & Anjali Chawla & Jennie Yang & Laura M. Fiori & Maria Antonietta Davoli & Kelly Perlman & Zahia Aouabed & Deborah C. Mash & Matthew Suderman & Nagu, 2023. "Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Isaac Dean & Colin Y. C. Lee & Zewen K. Tuong & Zhi Li & Christopher A. Tibbitt & Claire Willis & Fabrina Gaspal & Bethany C. Kennedy & Veronika Matei-Rascu & Rémi Fiancette & Caroline Nordenvall & Ul, 2024. "Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Ingrid M. Saldana-Guerrero & Luis F. Montano-Gutierrez & Katy Boswell & Christoph Hafemeister & Evon Poon & Lisa E. Shaw & Dylan Stavish & Rebecca A. Lea & Sara Wernig-Zorc & Eva Bozsaky & Irfete S. F, 2024. "A human neural crest model reveals the developmental impact of neuroblastoma-associated chromosomal aberrations," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    6. Kensuke Miyake & Junya Ito & Kazufusa Takahashi & Jun Nakabayashi & Frank Brombacher & Shigeyuki Shichino & Soichiro Yoshikawa & Sachiko Miyake & Hajime Karasuyama, 2024. "Single-cell transcriptomics identifies the differentiation trajectory from inflammatory monocytes to pro-resolving macrophages in a mouse skin allergy model," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jolene S. Ranek & Wayne Stallaert & J. Justin Milner & Margaret Redick & Samuel C. Wolff & Adriana S. Beltran & Natalie Stanley & Jeremy E. Purvis, 2024. "DELVE: feature selection for preserving biological trajectories in single-cell data," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    8. Guillem Sanchez Sanchez & Maria Papadopoulou & Abdulkader Azouz & Yohannes Tafesse & Archita Mishra & Jerry K. Y. Chan & Yiping Fan & Isoline Verdebout & Silvana Porco & Frédérick Libert & Florent Gin, 2022. "Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Wenpin Hou & Zhicheng Ji & Zeyu Chen & E. John Wherry & Stephanie C. Hicks & Hongkai Ji, 2023. "A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Manvendra Singh & Ying Zhao & Vinicius Daguano Gastaldi & Sonja M. Wojcik & Yasmina Curto & Riki Kawaguchi & Ricardo M. Merino & Laura Fernandez Garcia-Agudo & Holger Taschenberger & Nils Brose & Dani, 2023. "Erythropoietin re-wires cognition-associated transcriptional networks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Jia-Yuan Zhang & Fiona Hamey & Dominik Trzupek & Marius Mickunas & Mercede Lee & Leila Godfrey & Jennie H. M. Yang & Marcin L. Pekalski & Jane Kennet & Frank Waldron-Lynch & Mark L. Evans & Timothy I., 2022. "Low-dose IL-2 reduces IL-21+ T cell frequency and induces anti-inflammatory gene expression in type 1 diabetes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Sarah Cappuyns & Gino Philips & Vincent Vandecaveye & Bram Boeckx & Rogier Schepers & Thomas Van Brussel & Ingrid Arijs & Aurelie Mechels & Ayse Bassez & Francesca Lodi & Joris Jaekers & Halit Topal &, 2023. "PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Kensuke Shibata & Chihiro Motozono & Masamichi Nagae & Takashi Shimizu & Eri Ishikawa & Daisuke Motooka & Daisuke Okuzaki & Yoshihiro Izumi & Masatomo Takahashi & Nao Fujimori & James B. Wing & Takahi, 2022. "Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Ihab Ansari & Llorenç Solé-Boldo & Meshi Ridnik & Julian Gutekunst & Oliver Gilliam & Maria Korshko & Timur Liwinski & Birgit Jickeli & Noa Weinberg-Corem & Michal Shoshkes-Carmel & Eli Pikarsky & Era, 2023. "TET2 and TET3 loss disrupts small intestine differentiation and homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Hyun Kim & Won Chang & Seok Joo Chae & Jong-Eun Park & Minseok Seo & Jae Kyoung Kim, 2024. "scLENS: data-driven signal detection for unbiased scRNA-seq data analysis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Meilin Xue & Youwei Zhu & Yongsheng Jiang & Lijie Han & Minmin Shi & Rui Su & Liwen Wang & Cheng Xiong & Chaofu Wang & Ting Wang & Shijie Deng & Dong Wu & Yizhi Cao & Lei Dong & Fan Bai & Shulin Zhao , 2023. "Schwann cells regulate tumor cells and cancer-associated fibroblasts in the pancreatic ductal adenocarcinoma microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14766-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.