IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-14413-x.html
   My bibliography  Save this article

Photosynthesis-inspired H2 generation using a chlorophyll-loaded liposomal nanoplatform to detect and scavenge excess ROS

Author

Listed:
  • Wei-Lin Wan

    (National Tsing Hua University)

  • Bo Tian

    (National Tsing Hua University)

  • Yu-Jung Lin

    (National Tsing Hua University)

  • Chiranjeevi Korupalli

    (National Tsing Hua University)

  • Ming-Yen Lu

    (National Tsing Hua University)

  • Qinghua Cui

    (National Tsing Hua University)

  • Dehui Wan

    (National Tsing Hua University)

  • Yen Chang

    (Tzu Chi University)

  • Hsing-Wen Sung

    (National Tsing Hua University)

Abstract

A disturbance of reactive oxygen species (ROS) homeostasis may cause the pathogenesis of many diseases. Inspired by natural photosynthesis, this work proposes a photo-driven H2-evolving liposomal nanoplatform (Lip NP) that comprises an upconversion nanoparticle (UCNP) that is conjugated with gold nanoparticles (AuNPs) via a ROS-responsive linker, which is encapsulated inside the liposomal system in which the lipid bilayer embeds chlorophyll a (Chla). The UCNP functions as a transducer, converting NIR light into upconversion luminescence for simultaneous imaging and therapy in situ. Functioning as light-harvesting antennas, AuNPs are used to detect the local concentration of ROS for FRET biosensing, while the Chla activates the photosynthesis of H2 gas to scavenge local excess ROS. The results thus obtained indicate the potential of using the Lip NPs in the analysis of biological tissues, restoring their ROS homeostasis, possibly preventing the initiation and progression of diseases.

Suggested Citation

  • Wei-Lin Wan & Bo Tian & Yu-Jung Lin & Chiranjeevi Korupalli & Ming-Yen Lu & Qinghua Cui & Dehui Wan & Yen Chang & Hsing-Wen Sung, 2020. "Photosynthesis-inspired H2 generation using a chlorophyll-loaded liposomal nanoplatform to detect and scavenge excess ROS," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14413-x
    DOI: 10.1038/s41467-020-14413-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-14413-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-14413-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengqiang Chen & Yanxia Zhu & Qingqing Xu & Qi Jiang & Danyang Chen & Ting Chen & Xishen Xu & Zhaokui Jin & Qianjun He, 2022. "Photocatalytic glucose depletion and hydrogen generation for diabetic wound healing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jinwoo Shin & Dong Won Kang & Jong Hyeon Lim & Jong Min An & Youngseo Kim & Ji Hyeon Kim & Myung Sun Ji & Sungnam Park & Dokyoung Kim & Jin Yong Lee & Jong Seung Kim & Chang Seop Hong, 2023. "Wavelength engineerable porous organic polymer photosensitizers with protonation triggered ROS generation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Nailin Yang & Fei Gong & Bo Liu & Yu Hao & Yu Chao & Huali Lei & Xiaoyuan Yang & Yuehan Gong & Xianwen Wang & Zhuang Liu & Liang Cheng, 2022. "Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-14413-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.