IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13332-w.html
   My bibliography  Save this article

Quantum nanophotonics with group IV defects in diamond

Author

Listed:
  • Carlo Bradac

    (University of Technology)

  • Weibo Gao

    (Nanyang Technological University)

  • Jacopo Forneris

    (Istituto Nazionale di Fisica Nucleare (INFN) and Physics Department, Università degli Studi di Torino)

  • Matthew E. Trusheim

    (Massachusetts Institute of Technology)

  • Igor Aharonovich

    (University of Technology)

Abstract

Diamond photonics is an ever-growing field of research driven by the prospects of harnessing diamond and its colour centres as suitable hardware for solid-state quantum applications. The last two decades have seen the field shaped by the nitrogen-vacancy (NV) centre with both breakthrough fundamental physics demonstrations and practical realizations. Recently however, an entire suite of other diamond defects has emerged—group IV colour centres—namely the Si-, Ge-, Sn- and Pb-vacancies. In this perspective, we highlight the leading techniques for engineering and characterizing these diamond defects, discuss the current state-of-the-art group IV-based devices and provide an outlook of the future directions the field is taking towards the realisation of solid-state quantum photonics with diamond.

Suggested Citation

  • Carlo Bradac & Weibo Gao & Jacopo Forneris & Matthew E. Trusheim & Igor Aharonovich, 2019. "Quantum nanophotonics with group IV defects in diamond," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13332-w
    DOI: 10.1038/s41467-019-13332-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13332-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13332-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dylan Renaud & Daniel Rimoli Assumpcao & Graham Joe & Amirhassan Shams-Ansari & Di Zhu & Yaowen Hu & Neil Sinclair & Marko Loncar, 2023. "Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Hanfeng Wang & Matthew E. Trusheim & Laura Kim & Hamza Raniwala & Dirk R. Englund, 2023. "Field programmable spin arrays for scalable quantum repeaters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13332-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.