IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12979-9.html
   My bibliography  Save this article

Molecular architecture of softwood revealed by solid-state NMR

Author

Listed:
  • Oliver M. Terrett

    (University of Cambridge, Hopkins Building, The Downing Site)

  • Jan J. Lyczakowski

    (University of Cambridge, Hopkins Building, The Downing Site
    University of Cambridge, 1 Scroope Terrace)

  • Li Yu

    (University of Cambridge, Hopkins Building, The Downing Site
    University of Cambridge, 1 Scroope Terrace)

  • Dinu Iuga

    (University of Warwick)

  • W. Trent Franks

    (University of Warwick)

  • Steven P. Brown

    (University of Warwick)

  • Ray Dupree

    (University of Warwick)

  • Paul Dupree

    (University of Cambridge, Hopkins Building, The Downing Site
    University of Cambridge, 1 Scroope Terrace)

Abstract

Economically important softwood from conifers is mainly composed of the polysaccharides cellulose, galactoglucomannan and xylan, and the phenolic polymer, lignin. The interactions between these polymers lead to wood mechanical strength and must be overcome in biorefining. Here, we use 13C multidimensional solid-state NMR to analyse the polymer interactions in never-dried cell walls of the softwood, spruce. In contrast to some earlier softwood cell wall models, most of the xylan binds to cellulose in the two-fold screw conformation. Moreover, galactoglucomannan alters its conformation by intimately binding to the surface of cellulose microfibrils in a semi-crystalline fashion. Some galactoglucomannan and xylan bind to the same cellulose microfibrils, and lignin is associated with both of these cellulose-bound polysaccharides. We propose a model of softwood molecular architecture which explains the origin of the different cellulose environments observed in the NMR experiments. Our model will assist strategies for improving wood usage in a sustainable bioeconomy.

Suggested Citation

  • Oliver M. Terrett & Jan J. Lyczakowski & Li Yu & Dinu Iuga & W. Trent Franks & Steven P. Brown & Ray Dupree & Paul Dupree, 2019. "Molecular architecture of softwood revealed by solid-state NMR," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12979-9
    DOI: 10.1038/s41467-019-12979-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12979-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12979-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyou Zong & Scott Mazurkewich & Caroline S. Pereira & Haohao Fu & Wensheng Cai & Xueguang Shao & Munir S. Skaf & Johan Larsbrink & Leila Lo Leggio, 2022. "Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Alexandre Poulhazan & Alexandre A. Arnold & Frederic Mentink-Vigier & Artur Muszyński & Parastoo Azadi & Adnan Halim & Sergey Y. Vakhrushev & Hiren Jitendra Joshi & Tuo Wang & Dror E. Warschawski & Is, 2024. "Molecular-level architecture of Chlamydomonas reinhardtii’s glycoprotein-rich cell wall," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12979-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.