IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09210-0.html
   My bibliography  Save this article

Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability

Author

Listed:
  • Yipeng Zang

    (University of Science & Technology of China)

  • Shuwen Niu

    (University of Science & Technology of China)

  • Yishang Wu

    (University of Science & Technology of China)

  • Xusheng Zheng

    (University of Science & Technology of China)

  • Jinyan Cai

    (University of Science & Technology of China)

  • Jian Ye

    (University of Science & Technology of China)

  • Yufang Xie

    (University of Science & Technology of China)

  • Yun Liu

    (University of Science & Technology of China)

  • Jianbin Zhou

    (University of Science & Technology of China)

  • Junfa Zhu

    (University of Science & Technology of China)

  • Xiaojing Liu

    (University of Science & Technology of China)

  • Gongming Wang

    (University of Science & Technology of China)

  • Yitai Qian

    (University of Science & Technology of China)

Abstract

Molybdenum disulfide is naturally inert for alkaline hydrogen evolution catalysis, due to its unfavorable water adsorption and dissociation feature originated from the unsuitable orbital orientation. Herein, we successfully endow molybdenum disulfide with exceptional alkaline hydrogen evolution capability by carbon-induced orbital modulation. The prepared carbon doped molybdenum disulfide displays an unprecedented overpotential of 45 mV at 10 mA cm−2, which is substantially lower than 228 mV of the molybdenum disulfide and also represents the best alkaline hydrogen evolution catalytic activity among the ever-reported molybdenum disulfide catalysts. Fine structural analysis indicates the electronic and coordination structures of molybdenum disulfide have been significantly changed with carbon incorporation. Moreover, theoretical calculation further reveals carbon doping could create empty 2p orbitals perpendicular to the basal plane, enabling energetically favorable water adsorption and dissociation. The concept of orbital modulation could offer a unique approach for the rational design of hydrogen evolution catalysts and beyond.

Suggested Citation

  • Yipeng Zang & Shuwen Niu & Yishang Wu & Xusheng Zheng & Jinyan Cai & Jian Ye & Yufang Xie & Yun Liu & Jianbin Zhou & Junfa Zhu & Xiaojing Liu & Gongming Wang & Yitai Qian, 2019. "Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09210-0
    DOI: 10.1038/s41467-019-09210-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09210-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09210-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongming Sun & Zhenhua Yan & Caiying Tian & Cha Li & Xin Feng & Rong Huang & Yinghui Lan & Jing Chen & Cheng-Peng Li & Zhihong Zhang & Miao Du, 2022. "Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Guanhua Ren & Min Zhou & Peijun Hu & Jian-Fu Chen & Haifeng Wang, 2024. "Bubble-water/catalyst triphase interface microenvironment accelerates photocatalytic OER via optimizing semi-hydrophobic OH radical," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xiaona Zhao & Xiao-Li Zhou & Si-Yu Yang & Yuan Min & Jie-Jie Chen & Xian-Wei Liu, 2022. "Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Wei Liu & Xiting Wang & Fan Wang & Kaifa Du & Zhaofu Zhang & Yuzheng Guo & Huayi Yin & Dihua Wang, 2021. "A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Jie Xu & Gonglei Shao & Xuan Tang & Fang Lv & Haiyan Xiang & Changfei Jing & Song Liu & Sheng Dai & Yanguang Li & Jun Luo & Zhen Zhou, 2022. "Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09210-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.