IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09061-9.html
   My bibliography  Save this article

A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries

Author

Listed:
  • Sangryun Kim

    (Tohoku University)

  • Hiroyuki Oguchi

    (Tohoku University)

  • Naoki Toyama

    (Tohoku University)

  • Toyoto Sato

    (Tohoku University)

  • Shigeyuki Takagi

    (Tohoku University)

  • Toshiya Otomo

    (High Energy Accelerator Research Organization)

  • Dorai Arunkumar

    (Tohoku University)

  • Naoaki Kuwata

    (Tohoku University)

  • Junichi Kawamura

    (Tohoku University)

  • Shin-ichi Orimo

    (Tohoku University
    Tohoku University)

Abstract

All-solid-state batteries incorporating lithium metal anode have the potential to address the energy density issues of conventional lithium-ion batteries that use flammable organic liquid electrolytes and low-capacity carbonaceous anodes. However, they suffer from high lithium ion transfer resistance, mainly due to the instability of the solid electrolytes against lithium metal, limiting their use in practical cells. Here, we report a complex hydride lithium superionic conductor, 0.7Li(CB9H10)–0.3Li(CB11H12), with excellent stability against lithium metal and a high conductivity of 6.7 × 10−3 S cm−1 at 25 °C. This complex hydride exhibits stable lithium plating/stripping reaction with negligible interfacial resistance ( 2500 Wh kg−1) at a high current density of 5016 mA g−1. The present study opens up an unexplored research area in the field of solid electrolyte materials, contributing to the development of high-energy-density batteries.

Suggested Citation

  • Sangryun Kim & Hiroyuki Oguchi & Naoki Toyama & Toyoto Sato & Shigeyuki Takagi & Toshiya Otomo & Dorai Arunkumar & Naoaki Kuwata & Junichi Kawamura & Shin-ichi Orimo, 2019. "A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09061-9
    DOI: 10.1038/s41467-019-09061-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09061-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09061-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
    2. Muhammad Rizalul Wahid & Bentang Arief Budiman & Endra Joelianto & Muhammad Aziz, 2021. "A Review on Drive Train Technologies for Passenger Electric Vehicles," Energies, MDPI, vol. 14(20), pages 1-24, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09061-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.