IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-08885-9.html
   My bibliography  Save this article

A chemically fuelled self-replicator

Author

Listed:
  • Sarah M. Morrow

    (University of Oxford, Mansfield Road)

  • Ignacio Colomer

    (University of Oxford, Mansfield Road)

  • Stephen P. Fletcher

    (University of Oxford, Mansfield Road)

Abstract

The continuous consumption of chemical energy powers biological systems so that they can operate functional supramolecular structures. A goal of modern science is to understand how simple chemical mixtures may transition from non-living components to truly emergent systems and the production of new lifelike materials and machines. In this work a replicator can be maintained out-of-equilibrium by the continuous consumption of chemical energy. The system is driven by the autocatalytic formation of a metastable surfactant whose breakdown products are converted back into building blocks by a chemical fuel. The consumption of fuel allows the high-energy replicators to persist at a steady state, much like a simple metabolic cycle. Thermodynamically-driven reactions effect a unidirectional substrate flux as the system tries to regain equilibrium. The metastable replicator persists at a higher concentration than achieved even transiently in a closed system, and its concentration is responsive to the rate of fuel supply.

Suggested Citation

  • Sarah M. Morrow & Ignacio Colomer & Stephen P. Fletcher, 2019. "A chemically fuelled self-replicator," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08885-9
    DOI: 10.1038/s41467-019-08885-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-08885-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-08885-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianhua Lang & Yingjie Huang & Lirong He & Yixi Wang & Udayabhaskararao Thumu & Zonglin Chu & Wilhelm T. S. Huck & Hui Zhao, 2023. "Mechanosensitive non-equilibrium supramolecular polymerization in closed chemical systems," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Benjamin Klemm & Reece W. Lewis & Irene Piergentili & Rienk Eelkema, 2022. "Temporally programmed polymer – solvent interactions using a chemical reaction network," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08885-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.