IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08144-3.html
   My bibliography  Save this article

Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media

Author

Listed:
  • Yichao Lin

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ziqi Tian

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Linjuan Zhang

    (Chinese Academy of Sciences)

  • Jingyuan Ma

    (Chinese Academy of Sciences)

  • Zheng Jiang

    (Chinese Academy of Sciences)

  • Benjamin J. Deibert

    (The State University of New Jersey)

  • Ruixiang Ge

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Liang Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The development of active, acid-stable and low-cost electrocatalysts for oxygen evolution reaction is urgent and challenging. Herein we report an Iridium-free and low ruthenium-content oxide material (Cr0.6Ru0.4O2) derived from metal-organic framework with remarkable oxygen evolution reaction performance in acidic condition. It shows a record low overpotential of 178 mV at 10 mA cm−2 and maintains the excellent performance throughout the 10 h chronopotentiometry test at a constant current of 10 mA cm−2 in 0.5 M H2SO4 solution. Density functional theory calculations further revealed the intrinsic mechanism for the exceptional oxygen evolution reaction performance, highlighting the influence of chromium promoter on the enhancement in both activity and stability.

Suggested Citation

  • Yichao Lin & Ziqi Tian & Linjuan Zhang & Jingyuan Ma & Zheng Jiang & Benjamin J. Deibert & Ruixiang Ge & Liang Chen, 2019. "Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08144-3
    DOI: 10.1038/s41467-018-08144-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08144-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08144-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Zhou & Peifang Wang & Bin Hu & Xinyue Shen & Chongchong Liu & Weixiang Tao & Peilin Huang & Lizhe Liu, 2022. "Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ding Chen & Ruohan Yu & Kesong Yu & Ruihu Lu & Hongyu Zhao & Jixiang Jiao & Youtao Yao & Jiawei Zhu & Jinsong Wu & Shichun Mu, 2024. "Bicontinuous RuO2 nanoreactors for acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yanrong Xue & Jiwu Zhao & Liang Huang & Ying-Rui Lu & Abdul Malek & Ge Gao & Zhongbin Zhuang & Dingsheng Wang & Cafer T. Yavuz & Xu Lu, 2023. "Stabilizing ruthenium dioxide with cation-anchored sulfate for durable oxygen evolution in proton-exchange membrane water electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Nihat Ege Sahin & W. J. Pech-Rodríguez & P. C. Meléndez-González & Juan Lopez Hernández & E. Rocha-Rangel, 2023. "Water Splitting as an Alternative for Electrochemical Hydrogen and Oxygen Generation: Current Status, Trends, and Challenges," Energies, MDPI, vol. 16(13), pages 1-25, June.
    6. Kun Du & Lifu Zhang & Jieqiong Shan & Jiaxin Guo & Jing Mao & Chueh-Cheng Yang & Chia-Hsin Wang & Zhenpeng Hu & Tao Ling, 2022. "Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Dmitry Galyamin & Jorge Torrero & Isabel Rodríguez & Manuel J. Kolb & Pilar Ferrer & Laura Pascual & Mohamed Abdel Salam & Diego Gianolio & Verónica Celorrio & Mohamed Mokhtar & Daniel Garcia Sanchez , 2023. "Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Huanyu Jin & Xinyan Liu & Pengfei An & Cheng Tang & Huimin Yu & Qinghua Zhang & Hong-Jie Peng & Lin Gu & Yao Zheng & Taeseup Song & Kenneth Davey & Ungyu Paik & Juncai Dong & Shi-Zhang Qiao, 2023. "Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Dafeng Zhang & Mengnan Li & Xue Yong & Haoqiang Song & Geoffrey I. N. Waterhouse & Yunfei Yi & Bingjie Xue & Dongliang Zhang & Baozhong Liu & Siyu Lu, 2023. "Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Yi Wang & Rong Yang & Yajun Ding & Bo Zhang & Hao Li & Bing Bai & Mingrun Li & Yi Cui & Jianping Xiao & Zhong-Shuai Wu, 2023. "Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Xinyu Ping & Yongduo Liu & Lixia Zheng & Yang Song & Lin Guo & Siguo Chen & Zidong Wei, 2024. "Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Sanjiang Pan & Hao Li & Dan Liu & Rui Huang & Xuelei Pan & Dan Ren & Jun Li & Mohsen Shakouri & Qixing Zhang & Manjing Wang & Changchun Wei & Liqiang Mai & Bo Zhang & Ying Zhao & Zhenbin Wang & Michae, 2022. "Efficient and stable noble-metal-free catalyst for acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Lingyou Zeng & Zhonglong Zhao & Fan Lv & Zhonghong Xia & Shi-Yu Lu & Jiong Li & Kaian Sun & Kai Wang & Yingjun Sun & Qizheng Huang & Yan Chen & Qinghua Zhang & Lin Gu & Gang Lu & Shaojun Guo, 2022. "Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08144-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.