IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v9y2019i8d10.1038_s41558-019-0525-6.html
   My bibliography  Save this article

An emerging tropical cyclone–deadly heat compound hazard

Author

Listed:
  • T. Matthews

    (Loughborough University)

  • R. L. Wilby

    (Loughborough University)

  • C. Murphy

    (Maynooth University)

Abstract

Climate change may bring new hazards through novel combinations of extreme weather (compound events)1. Here we evaluate the possibility of dangerous heat following major tropical cyclones (TCs)—a combination with serious potential consequences given that mega-blackouts may follow powerful TCs2, and the heavy reliance on air conditioning3. We show that ‘TC–heat’ events are already possible along densely populated coastlines globally but, to date, only an estimated 1,000 people have been impacted. However, this number could rise markedly with over two million at risk under a storyline of the observed TCs recurring in a world 2 °C warmer than pre-industrial times. Using analogues as focusing events we show, for example, that if the catastrophic 1991 Bangladesh cyclone occurred with 2 °C global warming, there would be >70% chance of subsequent dangerous heat. This research highlights a gap in adaptation planning and a need to prepare for an emerging TC–heat compound hazard.

Suggested Citation

  • T. Matthews & R. L. Wilby & C. Murphy, 2019. "An emerging tropical cyclone–deadly heat compound hazard," Nature Climate Change, Nature, vol. 9(8), pages 602-606, August.
  • Handle: RePEc:nat:natcli:v:9:y:2019:i:8:d:10.1038_s41558-019-0525-6
    DOI: 10.1038/s41558-019-0525-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-019-0525-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-019-0525-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyan Sun & Xiaoyu Gao & Yali Luo & Wai-Kin Wong & Haiming Xu, 2022. "A Comparative Analysis of Characteristics and Synoptic Backgrounds of Extreme Heat Events over Two Urban Agglomerations in Southeast China," Land, MDPI, vol. 11(12), pages 1-18, December.
    2. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Yajing Zhang & Ruifang Hao & Yu Qin, 2024. "Temporal and Spatial Variation of Agricultural and Pastoral Production in the Eastern Section of the Agro-Pastoral Transitional Zone in Northern China," Agriculture, MDPI, vol. 14(6), pages 1-15, May.
    4. Kairui Feng & Min Ouyang & Ning Lin, 2022. "Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Kong, Xiangfei & Fu, Ying & Yuan, Jianjuan, 2023. "Novel flexible phase change materials with high emissivity, low thermal conductivity and mechanically robust for thermal management in outdoor environment," Applied Energy, Elsevier, vol. 348(C).
    6. Mo Wang & Zijing Chen & Dongqing Zhang & Ming Liu & Haojun Yuan & Biyi Chen & Qiuyi Rao & Shiqi Zhou & Yuankai Wang & Jianjun Li & Chengliang Fan & Soon Keat Tan, 2024. "Changes in Concurrent Meteorological Extremes of Rainfall and Heat under Divergent Climatic Trajectories in the Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 16(5), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:9:y:2019:i:8:d:10.1038_s41558-019-0525-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.