IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v6y2016i11d10.1038_nclimate3083.html
   My bibliography  Save this article

Health and climate impacts of ocean-going vessels in East Asia

Author

Listed:
  • Huan Liu

    (State Key Joint Laboratory of ESPC, School of the Environment, Tsinghua University
    State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
    Collaborative Innovation Centre for Regional Environmental Quality)

  • Mingliang Fu

    (State Key Joint Laboratory of ESPC, School of the Environment, Tsinghua University
    State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
    Collaborative Innovation Centre for Regional Environmental Quality)

  • Xinxin Jin

    (State Key Joint Laboratory of ESPC, School of the Environment, Tsinghua University
    State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
    Collaborative Innovation Centre for Regional Environmental Quality)

  • Yi Shang

    (State Key Joint Laboratory of ESPC, School of the Environment, Tsinghua University
    State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
    Collaborative Innovation Centre for Regional Environmental Quality)

  • Drew Shindell

    (Nicholas School of the Environment, Duke University)

  • Greg Faluvegi

    (NASA Goddard Institute for Space Studies)

  • Cary Shindell

    (North Carolina School of Science and Mathematics)

  • Kebin He

    (State Key Joint Laboratory of ESPC, School of the Environment, Tsinghua University
    State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
    Collaborative Innovation Centre for Regional Environmental Quality)

Abstract

East Asia has the most rapidly growing shipping emissions of both CO2 and traditional air pollutants, but the least in-depth analysis. Full evaluation of all pollutants is needed to assess the impacts of shipping emissions. Here, using an advanced method based on detailed dynamic ship activity data, we show that shipping emissions in East Asia accounted for 16% of global shipping CO2 in 2013, compared to only 4–7% in 2002–2005. Increased emissions lead to large adverse health impacts, with 14,500–37,500 premature deaths per year. Global mean radiative forcing from East Asian shipping is initially negative, but would become positive after approximately eight years for constant current emissions. As a large fraction of vessels are registered elsewhere, joint efforts are necessary to reduce emissions and mitigate the climate and health impacts of shipping in the region.

Suggested Citation

  • Huan Liu & Mingliang Fu & Xinxin Jin & Yi Shang & Drew Shindell & Greg Faluvegi & Cary Shindell & Kebin He, 2016. "Health and climate impacts of ocean-going vessels in East Asia," Nature Climate Change, Nature, vol. 6(11), pages 1037-1041, November.
  • Handle: RePEc:nat:natcli:v:6:y:2016:i:11:d:10.1038_nclimate3083
    DOI: 10.1038/nclimate3083
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate3083
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate3083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
    2. Xinyu Dou & Yilong Wang & Philippe Ciais & Fr'ed'eric Chevallier & Steven J. Davis & Monica Crippa & Greet Janssens-Maenhout & Diego Guizzardi & Efisio Solazzo & Feifan Yan & Da Huo & Zheng Bo & Zhu D, 2021. "Global Gridded Daily CO$_2$ Emissions," Papers 2107.08586, arXiv.org.
    3. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2021. "Assessment and improvement of EPA's penalty policy: From the perspective of governments' and ships' behaviors," Transport Policy, Elsevier, vol. 104(C), pages 18-28.
    4. Vetters, Jade & Thomassen, Gwenny & Van Passel, Steven, 2024. "Sailing through end-of-life challenges: A comprehensive review for offshore wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    6. Anthony Roy & François Auger & Jean-Christophe Olivier & Emmanuel Schaeffer & Bruno Auvity, 2020. "Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review," Energies, MDPI, vol. 13(20), pages 1-24, October.
    7. Simonsen, Morten & Gössling, Stefan & Walnum, Hans Jakob, 2019. "Cruise ship emissions in Norwegian waters: A geographical analysis," Journal of Transport Geography, Elsevier, vol. 78(C), pages 87-97.
    8. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2020. "Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:6:y:2016:i:11:d:10.1038_nclimate3083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.