IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v2y2012i6d10.1038_nclimate1454.html
   My bibliography  Save this article

Overestimation of Mediterranean summer temperature projections due to model deficiencies

Author

Listed:
  • Fredrik Boberg

    (Danish Meteorological Institute)

  • Jens H. Christensen

    (Danish Meteorological Institute)

Abstract

This study addresses the importance of systematic biases in regional and global climate models. Simulations for the central Mediterranean region show that, unless a bias-correction method is applied, individual models significantly overestimate regional amplification of global warming.

Suggested Citation

  • Fredrik Boberg & Jens H. Christensen, 2012. "Overestimation of Mediterranean summer temperature projections due to model deficiencies," Nature Climate Change, Nature, vol. 2(6), pages 433-436, June.
  • Handle: RePEc:nat:natcli:v:2:y:2012:i:6:d:10.1038_nclimate1454
    DOI: 10.1038/nclimate1454
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate1454
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate1454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neha Mittal & Ashok Mishra & Rajendra Singh & Pankaj Kumar, 2014. "Assessing future changes in seasonal climatic extremes in the Ganges river basin using an ensemble of regional climate models," Climatic Change, Springer, vol. 123(2), pages 273-286, March.
    2. Erika Coppola & Filippo Giorgi & Francesca Raffaele & Ramon Fuentes-Franco & Graziano Giuliani & Marta LLopart-Pereira & Ashu Mamgain & Laura Mariotti & Gulilat Diro & Csaba Torma, 2014. "Present and future climatologies in the phase I CREMA experiment," Climatic Change, Springer, vol. 125(1), pages 23-38, July.
    3. M. Ruiz-Ramos & A. Rodríguez & A. Dosio & C. Goodess & C. Harpham & M. Mínguez & E. Sánchez, 2016. "Comparing correction methods of RCM outputs for improving crop impact projections in the Iberian Peninsula for 21st century," Climatic Change, Springer, vol. 134(1), pages 283-297, January.
    4. Kenshi Hibino & Izuru Takayabu & Tosiyuki Nakaegawa, 2015. "Objective estimate of future climate analogues projected by an ensemble AGCM experiment under the SRES A1B scenario," Climatic Change, Springer, vol. 131(4), pages 677-689, August.
    5. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    6. J. Refsgaard & H. Madsen & V. Andréassian & K. Arnbjerg-Nielsen & T. Davidson & M. Drews & D. Hamilton & E. Jeppesen & E. Kjellström & J. Olesen & T. Sonnenborg & D. Trolle & P. Willems & J. Christens, 2014. "A framework for testing the ability of models to project climate change and its impacts," Climatic Change, Springer, vol. 122(1), pages 271-282, January.
    7. Lorenzo Sangelantoni & Eleonora Gioia & Fausto Marincioni, 2018. "Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 849-884, September.
    8. Bucchignani Edoardo & Mercogliano Paola & Montesarchio Myriam & Zollo Alessandra Lucia, 2017. "Numerical Simulation of the Period 1971–2100 over the Mediterranean Area with a Regional Model, Scenario SRES-A1B," Sustainability, MDPI, vol. 9(12), pages 1-17, November.
    9. Marco Turco & Antonella Sanna & Sixto Herrera & Maria-Carmen Llasat & José Gutiérrez, 2013. "Large biases and inconsistent climate change signals in ENSEMBLES regional projections," Climatic Change, Springer, vol. 120(4), pages 859-869, October.
    10. Alessandro Dosio & Christopher Lennard & Jonathan Spinoni, 2022. "Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations," Climatic Change, Springer, vol. 170(1), pages 1-24, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:2:y:2012:i:6:d:10.1038_nclimate1454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.