IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v11y2021i3d10.1038_s41558-020-00974-8.html
   My bibliography  Save this article

Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

Author

Listed:
  • Tao Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yutong Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chaoyi Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Philippe Ciais

    (Université Paris-Saclay)

  • Dan Liu

    (Chinese Academy of Sciences)

  • Hui Yang

    (Université Paris-Saclay)

  • Shilong Piao

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    Peking University)

  • Tandong Yao

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Rivers originating in the Tibetan Plateau provide freshwater to downstream populations, yet runoff projections from warming are unclear due to precipitation uncertainties. Here, we use a historical atmospheric circulation–precipitation relationship to constrain future modelled wet-season precipitation over the Tibetan Plateau. Our constraint reduces precipitation increases to half of those from the unconstrained ensemble and reduces spread by around a factor of three. This constrained precipitation is used with estimated glacier melt contributions to constrain future runoff for seven rivers. We estimate runoff increases of 1.0–7.2% at the end of the twenty-first century for global mean warming of 1.5–4 °C above pre-industrial levels. Because population projections diverge across basins, this runoff increase will reduce the population fraction living under water scarcity conditions in the Yangtze and Yellow basins but not in the Indus and Ganges basins, necessitating improved water security through climate change adaptation policies in these regions at higher risk.

Suggested Citation

  • Tao Wang & Yutong Zhao & Chaoyi Xu & Philippe Ciais & Dan Liu & Hui Yang & Shilong Piao & Tandong Yao, 2021. "Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets," Nature Climate Change, Nature, vol. 11(3), pages 219-225, March.
  • Handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00974-8
    DOI: 10.1038/s41558-020-00974-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-020-00974-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-020-00974-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziming Chen & Tianjun Zhou & Xiaolong Chen & Wenxia Zhang & Lixia Zhang & Mingna Wu & Liwei Zou, 2022. "Observationally constrained projection of Afro-Asian monsoon precipitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Guo, Jingxian & Li, Runkui & Cai, Panli & Xiao, Zhen & Fu, Haiyu & Guo, Tongze & Wang, Tianyi & Zhang, Xiaoping & Wang, Jiancheng & Song, Xianfeng, 2024. "Risk in solar energy: Spatio-temporal instability and extreme low-light events in China," Applied Energy, Elsevier, vol. 359(C).
    3. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Chunsheng Wu, 2022. "Study on the Spatial Differences in Land-Use Change and Driving Factors in Tibet," Land, MDPI, vol. 11(9), pages 1-17, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:11:y:2021:i:3:d:10.1038_s41558-020-00974-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.