IDEAS home Printed from https://ideas.repec.org/a/mth/jas888/v9y2021i2p283-303.html
   My bibliography  Save this article

Spatial-temporal Analysis of Soybean Productivity Using Geostatistical Methods

Author

Listed:
  • Gustavo Henrique Dalposso
  • Miguel Angel Uribe-Opazo
  • Fernanda De Bastiani

Abstract

To have information about the soybean productivity over the crop years is essential to define strategies to increase profits and reduce costs and most important to reduce environmental impacts. One form of monitoring is the use of Geostatistical methods, which allow us to obtain maps with more accurate predictions. In this paper, an area of 127.16 ha was studied during six crop years between 2012/2013 and 2017/2018. We found that productivity values vary between crop years, mainly due to uncontrollable climatic factors. The removal of influential points caused changes in the predicted values showed in the maps, and the use of scaled semivariograms allowed us to obtain similar maps to those obtained considering the model without influential points, then there was no need to exclude observations. The use of a model with replicates helped to identify regions where productivity was lower. The use of explanatory variables allowed us to elaborate a more accurate thematic map in the 2017/2018 crop year, which was well evidenced by the prediction standard error map.

Suggested Citation

  • Gustavo Henrique Dalposso & Miguel Angel Uribe-Opazo & Fernanda De Bastiani, 2021. "Spatial-temporal Analysis of Soybean Productivity Using Geostatistical Methods," Journal of Agricultural Studies, Macrothink Institute, vol. 9(2), pages 283-303, June.
  • Handle: RePEc:mth:jas888:v:9:y:2021:i:2:p:283-303
    as

    Download full text from publisher

    File URL: http://www.macrothink.org/journal/index.php/jas/article/download/18494/14412
    Download Restriction: no

    File URL: http://www.macrothink.org/journal/index.php/jas/article/view/18494
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W.‐Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    2. Samuel C. A. Pereira, 2021. "On the precision of information," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 30(3), pages 569-584, August.
    3. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. R. S. Fagundes & M. A. Uribe-Opazo & M. Galea & L. P. C. Guedes, 2018. "Spatial Variability in Slash Linear Modeling with Finite Second Moment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 276-296, June.
    3. Russo, Cibele M. & Paula, Gilberto A. & Aoki, Reiko, 2009. "Influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4143-4156, October.
    4. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    5. Cibele M. Russo & Gilberto A. Paula & Francisco Jos� A. Cysneiros & Reiko Aoki, 2012. "Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1049-1067, October.
    6. Ernane M Lemes & Breno N R Azevedo & Matheus F I Domiciano & Samuel L Andrade, 2021. "Improving Soybean Production Using Light Supplementation at Field-Scale: A Case Study," Journal of Agricultural Studies, Macrothink Institute, vol. 9(3), pages 259-275, September.
    7. Amine Saddik & Rachid Latif & Abdelhafid El Ouardi & Mohammed I. Alghamdi & Mohamed Elhoseny, 2022. "Improving Sustainable Vegetation Indices Processing on Low-Cost Architectures," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    8. Wai-Yin Poon & Man-Lai Tang & Shu-Jia Wang, 2003. "Influence Measures in Contingency Tables With Application in Sampling Zeros," Sociological Methods & Research, , vol. 31(4), pages 439-452, May.
    9. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    10. Xiaowen Dai & Libin Jin & Lei Shi & Cuiping Yang & Shuangzhe Liu, 2016. "Local influence analysis in general spatial models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 313-331, July.
    11. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    12. R.A.B. Assumpção & M.A. Uribe-Opazo & M. Galea, 2014. "Analysis of local influence in geostatistics using Student's t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2323-2341, November.
    13. Haavio, Markus & Laine, Olli-Matti, 2021. "Monetary policy rules and the effective lower bound in the Euro area," Research Discussion Papers 5/2021, Bank of Finland.
    14. Lee, Sik-Yum & Lu, Bin & Song, Xin-Yuan, 2006. "Assessing local influence for nonlinear structural equation models with ignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1356-1377, March.
    15. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    16. Sik-Yum Lee & Liang Xu, 2003. "On local influence analysis of full information item factor models," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 339-360, September.
    17. Hafiz Suliman Munawar & Hina Inam & Fahim Ullah & Siddra Qayyum & Abbas Z. Kouzani & M. A. Parvez Mahmud, 2021. "Towards Smart Healthcare: UAV-Based Optimized Path Planning for Delivering COVID-19 Self-Testing Kits Using Cutting Edge Technologies," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    18. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    19. Shu Wei Chou-Chen & Rodrigo A. Oliveira & Irina Raicher & Gilberto A. Paula, 2024. "Additive partial linear models with autoregressive symmetric errors and its application to the hospitalizations for respiratory diseases," Statistical Papers, Springer, vol. 65(8), pages 5145-5166, October.
    20. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mth:jas888:v:9:y:2021:i:2:p:283-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Technical Support Office (email available below). General contact details of provider: http://www.macrothink.org/journal/index.php/jas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.