IDEAS home Printed from https://ideas.repec.org/a/mth/emsd88/v12y2023i2p54-66.html
   My bibliography  Save this article

Optimal Tilt Angle of Photovoltaic Panels: A Case Study in the City of Rio de Janeiro

Author

Listed:
  • Alexandro Gomes
  • Maria Francisca do Nascimento Oliveira
  • Marcelo Musci

Abstract

The optimal tilt angle of photovoltaic panels plays a crucial role in energy generation. However, the accumulation of dust on solar panels can significantly impact their performance and efficiency, leading to a reduction in energy production. Therefore, it is crucial to consider the effect of dust deposition on the optimal tilt angle of solar panels. Regarding panel installation, it is often observed that panels are positioned to follow the natural slope of the roofs, disregarding the optimal angle for maximizing solar radiation utilization. Numerous studies have investigated the impact of dust accumulation on the performance of photovoltaic panels and the optimal inclination angle for different regions and seasons. This study aims to analyze the optimal tilt angle of photovoltaic panels for maximum energy generation, considering undesired effects such as dust, dirt, water droplets, and other atmospheric factors. The authors have proposed an equation to calculate the optimal tilt angle of photovoltaic panels based on a case study conducted in different Rio de Janeiro City regions. The methodology employed in this study involves estimating solar incidence on the surface of the photovoltaic panels using the authors' proposed equation, which considers the latitude and longitude of the panel installation location. The results obtained were validated using software that generates hourly solar radiation data. The results indicate that an inclination of 30 degrees, calculated using the proposed equation, resulted in a 2% deviation from the optimal theoretical angle.

Suggested Citation

  • Alexandro Gomes & Maria Francisca do Nascimento Oliveira & Marcelo Musci, 2023. "Optimal Tilt Angle of Photovoltaic Panels: A Case Study in the City of Rio de Janeiro," Environmental Management and Sustainable Development, Macrothink Institute, vol. 12(2), pages 54-66, December.
  • Handle: RePEc:mth:emsd88:v:12:y:2023:i:2:p:54-66
    as

    Download full text from publisher

    File URL: https://www.macrothink.org/journal/index.php/emsd/article/download/20992/16345
    Download Restriction: no

    File URL: https://www.macrothink.org/journal/index.php/emsd/article/view/20992
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hachicha, Ahmed Amine & Al-Sawafta, Israa & Said, Zafar, 2019. "Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions," Renewable Energy, Elsevier, vol. 141(C), pages 287-297.
    2. Mahsa Z. Farahmand & M. E. Nazari & S. Shamlou & Miadreza Shafie-khah, 2021. "The Simultaneous Impacts of Seasonal Weather and Solar Conditions on PV Panels Electrical Characteristics," Energies, MDPI, vol. 14(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ning & Yan, Suying & Zhang, Na & Zhao, Xiaoyan, 2022. "Impacts of seasonal dust accumulation on a point-focused Fresnel high-concentration photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 191(C), pages 732-746.
    2. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    3. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Khaled M. Alawasa & Rashid S. AlAbri & Amer S. Al-Hinai & Mohammed H. Albadi & Abdullah H. Al-Badi, 2021. "Experimental Study on the Effect of Dust Deposition on a Car Park Photovoltaic System with Different Cleaning Cycles," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    6. Opoku, Richard & Obeng, George Y. & Adjei, Eunice A. & Davis, Francis & Akuffo, Fred O., 2020. "Integrated system efficiency in reducing redundancy and promoting residential renewable energy in countries without net-metering: A case study of a SHS in Ghana," Renewable Energy, Elsevier, vol. 155(C), pages 65-78.
    7. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    8. Hachicha, Ahmed Amine & Abo-Zahhad, Essam M. & Said, Zafar & Rahman, S.M.A., 2022. "Numerical and experimental investigations of the electrical and thermal performances of a novel PV thermal system," Renewable Energy, Elsevier, vol. 195(C), pages 990-1000.
    9. Umar, Shayan & Waqas, Adeel & Tanveer, Waqas & Shahzad, Nadia & Janjua, Abdul Kashif & Dehghan, Maziar & Qureshi, Muhammad Salik & Shakir, Sehar, 2023. "A building integrated solar PV surface-cleaning setup to optimize the electricity output of PV modules in a polluted atmosphere," Renewable Energy, Elsevier, vol. 216(C).
    10. Siripha Junlakarn & Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Stochastic Modeling of Renewable Energy Sources for Capacity Credit Evaluation," Energies, MDPI, vol. 15(14), pages 1-27, July.
    11. Sahouane, Nordine & Ziane, Abderrezzaq & Dabou, Rachid & Neçaibia, Ammar & Rouabhia, Abdelkrim & Lachtar, Salah & Blal, Mohammed & Slimani, Abdeldjalil & Boudjamaa, Tidjar, 2023. "Technical and economic study of the sand and dust accumulation impact on the energy performance of photovoltaic system in Algerian Sahara," Renewable Energy, Elsevier, vol. 205(C), pages 142-155.
    12. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance," Energy, Elsevier, vol. 233(C).
    13. Raillani, Benyounes & Salhi, Mourad & Chaatouf, Dounia & Amraqui, Samir & Mezrhab, Ahmed, 2022. "Optimization of a porous wind barrier to reduce soiling and avoid shading losses of photovoltaic panels," Renewable Energy, Elsevier, vol. 189(C), pages 510-523.
    14. Tong Liu & Li Liu & Yufang He & Mengfei Sun & Jian Liu & Guochang Xu, 2021. "A Theoretical Optimum Tilt Angle Model for Solar Collectors from Keplerian Orbit," Energies, MDPI, vol. 14(15), pages 1-17, July.
    15. Ndeto, Martin Paul & Wekesa, David Wafula & Njoka, Francis & Kinyua, Robert, 2023. "Aeolian dust distribution, elemental concentration, characteristics and its effects on the conversion efficiency of crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 208(C), pages 481-491.
    16. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    17. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    18. Antonia Sônia A. C. Diniz & Tulio P. Duarte & Suellen A. C. Costa & Daniel Sena Braga & Vinicius Camatta Santana & Lawrence L. Kazmerski, 2022. "Soiling Spectral and Module Temperature Effects: Comparisons of Competing Operating Parameters for Four Commercial PV Module Technologies," Energies, MDPI, vol. 15(15), pages 1-18, July.
    19. Chanchangi, Yusuf N. & Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2020. "Dust and PV Performance in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mth:emsd88:v:12:y:2023:i:2:p:54-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Technical Support Office (email available below). General contact details of provider: http://www.macrothink.org/journal/index.php/emsd .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.