IDEAS home Printed from https://ideas.repec.org/a/mth/ber888/v3y2013i1p498-511.html
   My bibliography  Save this article

Technical Analysis on Markets with Memory

Author

Listed:
  • PhD Flifel Kaouther

Abstract

Economists note that financial markets are experiencing alternating periods of euphoria and depression. The question they ask is to know how to "beat the market". Some, relying on the analysis of covariance, affirm portfolio diversification, others lean towards the reflexive interaction "players" and the market, others base their theory on their own experiences, give particular attention to the intrinsic value of the business and provide a strong distinction between the investor and the speculator. In this article we will discuss the relative merits of two classic strategies of prediction, "fundamental analysis" versus "technical analysis "(or" Chartism ") and this for different cases of figs for markets with and without memory.

Suggested Citation

  • PhD Flifel Kaouther, 2013. "Technical Analysis on Markets with Memory," Business and Economic Research, Macrothink Institute, vol. 3(1), pages 498-511, June.
  • Handle: RePEc:mth:ber888:v:3:y:2013:i:1:p:498-511
    as

    Download full text from publisher

    File URL: http://www.macrothink.org/journal/index.php/ber/article/view/3420/3169
    Download Restriction: no

    File URL: http://www.macrothink.org/journal/index.php/ber/article/view/3420
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 285-300, September.
    2. Limam Imed, 2003. "Is Long Memory a Property of Thin Stock Markets? International Evidence Using Arab Countries," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 56-71, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, Robert, 1999. "Forecasting Ability But No Profitability: An Empirical Evaluation of Genetic Algorithm-optimised Technical Trading Rules," MPRA Paper 9055, University Library of Munich, Germany.
    2. Brooks, Robert, 2007. "Power arch modelling of the volatility of emerging equity markets," Emerging Markets Review, Elsevier, vol. 8(2), pages 124-133, May.
    3. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    4. Enrique Rafael González Pozo, 2020. "An Argument Against Stock-Picking and Market-Timing: An Empirical Approach," Investigación & Desarrollo, Universidad Privada Boliviana, vol. 1(1), pages 93-106.
    5. Michael McAleer & John Suen & Wing Keung Wong, 2016. "Profiteering from the Dot-Com Bubble, Subprime Crisis and Asian Financial Crisis," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 257-279, September.
    6. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    7. LeBaron, Blake & Arthur, W. Brian & Palmer, Richard, 1999. "Time series properties of an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1487-1516, September.
    8. Pierre Giot & Mikael Petitjean, 2011. "On the statistical and economic performance of stock return predictive regression models: an international perspective," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 175-193.
    9. Rim Ammar Lamouchi, 2020. "Long Memory and Stock Market Efficiency: Case of Saudi Arabia," International Journal of Economics and Financial Issues, Econjournals, vol. 10(3), pages 29-34.
    10. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
    11. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    12. Jimmy Hilliard & Adam Schwartz & James Squire, 2013. "A Test of Technical Analysis: Matching Time Displaced Generalized Patterns," Financial Management, Financial Management Association International, vol. 42(2), pages 291-314, June.
    13. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    14. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    15. Lin, Xiaoqiang & Chen, Qiang & Tang, Zhenpeng, 2014. "Dynamic hedging strategy in incomplete market: Evidence from Shanghai fuel oil futures market," Economic Modelling, Elsevier, vol. 40(C), pages 81-90.
    16. Suzanne Fifield & David Power & C. Donald Sinclair, 2005. "An analysis of trading strategies in eleven European stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 11(6), pages 531-548.
    17. Nauzer Balsara & Jason Chen & Lin Zheng, 2009. "Profiting from a contrarian application of technical trading rules in the US stock market," Journal of Asset Management, Palgrave Macmillan, vol. 10(2), pages 97-123, June.
    18. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    19. Mejra Festic & Alenka Kavkler & Silvo Dajcman, 2012. "Long memory in the Croatian and Hungarian stock market returns," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 30(1), pages 115-139.
    20. C. L. Dunis & Jason Laws & Ben Evans, 2006. "Trading futures spreads: an application of correlation and threshold filters," Applied Financial Economics, Taylor & Francis Journals, vol. 16(12), pages 903-914.

    More about this item

    Keywords

    Technical analysis; Fundamental analysis; Technical indicator; Long memory.;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mth:ber888:v:3:y:2013:i:1:p:498-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Technical Support Office (email available below). General contact details of provider: http://www.macrothink.org/journal/index.php/ber .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.