IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2432.html
   My bibliography  Save this paper

On the statistical and economic performance of stock return predictive regression models: an international perspective

Author

Listed:
  • GIOT, Pierre
  • PETITJEAN, Mikael

Abstract

The predictability of stock returns is assessed in 10 countries using the linear predictive regression framework. We use recently developed out-of-sample statistical tests and include both valuation ratios and interest rates as predictive variables. Contrary to previous studies, we explicitly address the issue of the small-sample bias, deal with trading profitability, and employ several risk-adjusted metrics. When statistical forecastability is found, it cannot be exploited to consistently deliver abnormal returns across countries and investment horizons. We hold the view that returns are predictable to some extent, but show that such forecasts are not useful for portfolio advice.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • GIOT, Pierre & PETITJEAN, Mikael, 2011. "On the statistical and economic performance of stock return predictive regression models: an international perspective," LIDAM Reprints CORE 2432, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2432
    DOI: 10.1080/14697680903468971
    Note: In : Quantitative Finance, 11(2),175-193, 2011
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    2. Michael C. Jensen, 1968. "The Performance Of Mutual Funds In The Period 1945–1964," Journal of Finance, American Finance Association, vol. 23(2), pages 389-416, May.
    3. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Campbell, J.Y. & Shiller, R.J., 1988. "Stock Prices, Earnings And Expected Dividends," Papers 334, Princeton, Department of Economics - Econometric Research Program.
    6. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    7. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    8. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    9. Polk, Christopher & Thompson, Samuel & Vuolteenaho, Tuomo, 2006. "Cross-sectional forecasts of the equity premium," Journal of Financial Economics, Elsevier, vol. 81(1), pages 101-141, July.
    10. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    11. Dacorogna, Michel M. & Gençay, Ramazan & Müller, Ulrich A. & Pictet, Olivier V., 2001. "Effective return, risk aversion and drawdowns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(1), pages 229-248.
    12. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    13. Neely, Christopher J., 2003. "Risk-adjusted, ex ante, optimal technical trading rules in equity markets," International Review of Economics & Finance, Elsevier, vol. 12(1), pages 69-87.
    14. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    15. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 285-300, September.
    16. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    2. Tissaoui, Kais & Azibi, Jamel, 2019. "International implied volatility risk indexes and Saudi stock return-volatility predictabilities," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 65-84.
    3. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    4. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    5. Sousa, Ricardo M. & Vivian, Andrew & Wohar, Mark E., 2016. "Predicting asset returns in the BRICS: The role of macroeconomic and fundamental predictors," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 122-143.
    6. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "International stock return predictability: Evidence from new statistical tests," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.
    7. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2016. "Can commodity returns forecast Canadian sector stock returns?," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 172-188.
    8. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GIOT, Pierre & PETITJEAN, Mikael, 2006. "International stock return predictability: statistical evidence and economic significance," LIDAM Discussion Papers CORE 2006088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: Some new evidence," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
    5. Westerlund, Joakim & Narayan, Paresh Kumar, 2012. "Does the choice of estimator matter when forecasting returns?," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2632-2640.
    6. Dladla, Pholile & Malikane, Christopher, 2019. "Stock return predictability: Evidence from a structural model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 412-424.
    7. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    8. Ekaterini Panopoulou & Sotiria Plastira, 2014. "Fama French factors and US stock return predictability," Journal of Asset Management, Palgrave Macmillan, vol. 15(2), pages 110-128, April.
    9. Ana Sequeira, 2013. "Predicting aggregate returns using valuation ratios out-of-sample," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    10. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    11. Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2016. "Stock return predictability and determinants of predictability and profits," Emerging Markets Review, Elsevier, vol. 26(C), pages 153-173.
    12. repec:grz:wpaper:2012-02 is not listed on IDEAS
    13. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    14. Maio, Paulo & Xu, Danielle, 2020. "Cash-flow or return predictability at long horizons? The case of earnings yield," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 172-192.
    15. Maio, Paulo & Santa-Clara, Pedro, 2012. "Multifactor models and their consistency with the ICAPM," Journal of Financial Economics, Elsevier, vol. 106(3), pages 586-613.
    16. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    17. Amélie Charles & Olivier Darné & Jae H. Kim, 2022. "Stock return predictability: Evaluation based on interval forecasts," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
    18. John Y. Campbell & Samuel B. Thompson, 2005. "Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?," Harvard Institute of Economic Research Working Papers 2084, Harvard - Institute of Economic Research.
    19. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    20. Bakshi, Gurdip & Panayotov, George & Skoulakis, Georgios, 2011. "Improving the predictability of real economic activity and asset returns with forward variances inferred from option portfolios," Journal of Financial Economics, Elsevier, vol. 100(3), pages 475-495, June.
    21. Tae-Hwy Lee & Eric Hillebrand & Marcelo Medeiros, 2014. "Bagging Constrained Equity Premium Predictors," Working Papers 201421, University of California at Riverside, Department of Economics, revised Feb 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.