IDEAS home Printed from https://ideas.repec.org/a/mnb/finrev/v22y2023i3p48-66.html
   My bibliography  Save this article

An Empirical Analysis of the Predictive Power of European Yield Curves

Author

Listed:
  • Marcell Peter Granat

    (Magyar Nemzeti Bank, John Von Neumann University, Eotvos Lorand University)

  • Gabor Neszveda

    (Magyar Nemzeti Bank, John Von Neumann University)

  • Dorottya Szabo

    (University of Lisbon)

Abstract

For various reasons, the yield curve of government bonds serves as a reliable predictor of recessions in the US. This study provides an empirical analysis of whether there is such a relationship in European countries. The methodological framework employed in this study encompasses the utilisation of the Hodrick- Prescott filter in conjunction with a probit model. The modelling procedure in the literature is extended by optimally combining government bond maturity spreads and examining whether the results are also robust for European yield curves. The main finding of the paper is that in the US the spreads calculated from the yield of 7-year and 1-year government bonds are the best predictors, and they are similarly suitable for predicting economic crises in half of the European countries as well.

Suggested Citation

  • Marcell Peter Granat & Gabor Neszveda & Dorottya Szabo, 2023. "An Empirical Analysis of the Predictive Power of European Yield Curves," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 22(3), pages 48-66.
  • Handle: RePEc:mnb:finrev:v:22:y:2023:i:3:p:48-66
    as

    Download full text from publisher

    File URL: https://en-hitelintezetiszemle.mnb.hu/letoltes/fer-22-3-st2-granat-neszveda-szabo.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    2. György Matolcsy & Dániel Palotai, 2016. "The interaction between fiscal and monetary policy in Hungary over the past decade and a half," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 15(2), pages 5-32.
    3. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    2. Seitz, Franz & Baumann, Ursel & Albuquerque, Bruno, 2015. "The information content of money and credit for US activity," Working Paper Series 1803, European Central Bank.
    3. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    4. Luca Benzoni & Olena Chyruk & David Kelley, 2018. "Why Does the Yield-Curve Slope Predict Recessions?," Chicago Fed Letter, Federal Reserve Bank of Chicago.
    5. Anna Florio, 2016. "The central bank as shaper and observer of events: The case of the yield spread," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(1), pages 320-346, February.
    6. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    7. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    8. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    9. Camelia Minoiu & Andrés Schneider & Min Wei, 2023. "Why Does the Yield Curve Predict GDP Growth? The Role of Banks," FRB Atlanta Working Paper 2023-14, Federal Reserve Bank of Atlanta.
    10. Leo Krippner & Leif Anders Thorsrud, 2009. "Forecasting New Zealand's economic growth using yield curve information," Reserve Bank of New Zealand Discussion Paper Series DP2009/18, Reserve Bank of New Zealand.
    11. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    12. Fernandez-Perez, Adrian & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2014. "The term structure of interest rates as predictor of stock returns: Evidence for the IBEX 35 during a bear market," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 21-33.
    13. Leo Krippner & Michelle Lewis, 2018. "Real-time forecasting with macro-finance models in the presence of a zero lower bound," Reserve Bank of New Zealand Discussion Paper Series DP2018/04, Reserve Bank of New Zealand.
    14. Gregory de Walque & Thomas Lejeune & Ansgar Rannenberg, 2023. "Empirical DSGE model evaluation with interest rate expectations measures and preferences over safe assets," Working Paper Research 433, National Bank of Belgium.
    15. Henri Nyberg, 2018. "Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(1), pages 1-15, January.
    16. Albuquerque, Bruno & Baumann, Ursel & Seitz, Franz, 2016. "What does money and credit tell us about real activity in the United States?," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 328-347.
    17. Martin Pažický, 2021. "Predicting Recessions in Germany Using the German and the US Yield Curve," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(3), pages 263-291, December.
    18. Periklis Gogas & Theophilos Papadimitriou & Maria Matthaiou & Efthymia Chrysanthidou, 2015. "Yield Curve and Recession Forecasting in a Machine Learning Framework," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 635-645, April.
    19. B. De Backer & M. Deroose & Ch. Van Nieuwenhuyze, 2019. "Is a recession imminent? The signal of the yield curve," Economic Review, National Bank of Belgium, issue i, pages 69-93, June.
    20. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.

    More about this item

    Keywords

    yield curve; recession; probit model;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnb:finrev:v:22:y:2023:i:3:p:48-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Morvay Endre (email available below). General contact details of provider: https://edirc.repec.org/data/mnbgvhu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.