IDEAS home Printed from https://ideas.repec.org/a/mgt/youmgt/v11y2013i4p353-373.html
   My bibliography  Save this article

Testing of Dependencies between Stock Returns and Trading Volume by High Frequency Data

Author

Listed:
  • Piotr Gurgul

    (AGH University of Science and Technology, Cracow, Poland)

  • Robert Syrek

    (Jagiellonian University, Poland)

Abstract

This paper is concerned with a dependence analysis of returns, return volatility and trading volume for five companies listed on the Vienna Stock Exchange and five from theWarsaw Stock Exchange. Taking into account high frequency data for these companies, tests based on a comparison of Bernstein copula densities using the Hellinger distance were conducted. The paper presents some patterns of causal and other relationships between stock returns, realized volatility and expected and unexpected trading volume. There is a linear causality running from realized volatility to expected trading volume, and a lack of nonlinear dependence in the opposite direction. The authors detected strong linear and nonlinear causality from stock returns to expected trading volume. They did not find causality running in the opposite direction. In addition, the existence of fractional cointegration was examined. Despite the equality of the long memory parameters of realized volatility and trading volumes, they do not move together in the long term horizon.

Suggested Citation

  • Piotr Gurgul & Robert Syrek, 2013. "Testing of Dependencies between Stock Returns and Trading Volume by High Frequency Data," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 11(4 (Winter), pages 353-373.
  • Handle: RePEc:mgt:youmgt:v:11:y:2013:i:4:p:353-373
    as

    Download full text from publisher

    File URL: http://www.fm-kp.si/zalozba/ISSN/1581-6311/11_353-373.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harris, Lawrence, 1986. "Cross-Security Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(1), pages 39-46, March.
    2. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    3. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    4. Asimakopoulos, Ioannis & Ayling, David & Mansor Mahmood, Wan, 2000. "Non-linear Granger causality in the currency futures returns," Economics Letters, Elsevier, vol. 68(1), pages 25-30, July.
    5. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
    6. repec:taf:jnlbes:v:30:y:2012:i:2:p:275-287 is not listed on IDEAS
    7. Lee, Bong-Soo & Rui, Oliver M., 2002. "The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence," Journal of Banking & Finance, Elsevier, vol. 26(1), pages 51-78, January.
    8. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    9. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    11. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    12. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
    13. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    14. Efstathios Paparoditis & Dimitris Politis, 2000. "The Local Bootstrap for Kernel Estimators under General Dependence Conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(1), pages 139-159, March.
    15. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henryk Gurgul & Lukaz Lach & Tomasz Wojtowicz, 2016. "Impact of US Macroeconomic News Announcements on Intraday Causalities on Selected European Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(5), pages 405-425, October.
    2. Henryk Gurgul & Lukasz Lach & Tomasz Wójtowicz, 2016. "Linear and nonlinear intraday causalities in response to U.S. macroeconomic news announcements: Evidence from Central Europe," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 17(2), pages 217-240.
    3. Do, Hung Xuan & Brooks, Robert & Treepongkaruna, Sirimon & Wu, Eliza, 2014. "How does trading volume affect financial return distributions?," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 190-206.
    4. Henryk Gurgul & Roland Mestel & Robert Syrek, 2008. "Polish Stock Market and some foreign markets - dependence analysis by copulas," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 18(2), pages 17-35.
    5. David McMillan & Alan Speight, 2002. "Return-volume dynamics in UK futures," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 707-713.
    6. Cathy W.S. Chen & Mike K.P. So & Thomas C. Chiang, 2016. "Evidence of Stock Returns and Abnormal Trading Volume: A Threshold Quantile Regression Approach," The Japanese Economic Review, Japanese Economic Association, vol. 67(1), pages 96-124, March.
    7. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    8. Lee, Cheng F & Rui, Oliver M, 2000. "Does Trading Volume Contain Information to Predict Stock Returns? Evidence from China's Stock Markets," Review of Quantitative Finance and Accounting, Springer, vol. 14(4), pages 341-360, June.
    9. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    10. Behrendt, Simon & Schmidt, Alexander, 2021. "Nonlinearity matters: The stock price – trading volume relation revisited," Economic Modelling, Elsevier, vol. 98(C), pages 371-385.
    11. Alizadeh, Amir H., 2013. "Trading volume and volatility in the shipping forward freight market," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 250-265.
    12. Bajzik, Josef, 2021. "Trading volume and stock returns: A meta-analysis," International Review of Financial Analysis, Elsevier, vol. 78(C).
    13. Koubaa, Yosra & Slim, Skander, 2019. "The relationship between trading activity and stock market volatility: Does the volume threshold matter?," Economic Modelling, Elsevier, vol. 82(C), pages 168-184.
    14. Shyh-Wei Chen, 2008. "Untangling the nexus of stock price and trading volume: evidence from the Chinese stock market," Economics Bulletin, AccessEcon, vol. 7(15), pages 1-16.
    15. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    16. repec:ebl:ecbull:v:7:y:2008:i:15:p:1-16 is not listed on IDEAS
    17. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    18. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    19. Kausik Chaudhuri & Alok Kumar, 2015. "A Markov-Switching Model for Indian Stock Price and Volume," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 14(3), pages 239-257, December.
    20. Marcus Alexander Ong, 2015. "An information theoretic analysis of stock returns, volatility and trading volumes," Applied Economics, Taylor & Francis Journals, vol. 47(36), pages 3891-3906, August.
    21. Lee, Bong-Soo & Rui, Oliver M., 2002. "The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence," Journal of Banking & Finance, Elsevier, vol. 26(1), pages 51-78, January.

    More about this item

    Keywords

    realized volatility; trading volume; dynamic interrelations; copulas; fractional cointegration;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mgt:youmgt:v:11:y:2013:i:4:p:353-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alen Jezovnik (email available below). General contact details of provider: https://edirc.repec.org/data/fmkupsi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.