IDEAS home Printed from https://ideas.repec.org/a/mcb/jmoncb/v43y2011i5p993-1017.html
   My bibliography  Save this article

Differential Interpretation in the Survey of Professional Forecasters

Author

Listed:
  • SEBASTIANO MANZAN

Abstract

No abstract is available for this item.

Suggested Citation

  • Sebastiano Manzan, 2011. "Differential Interpretation in the Survey of Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 993-1017, August.
  • Handle: RePEc:mcb:jmoncb:v:43:y:2011:i:5:p:993-1017
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022. "Do expert experience and characteristics affect inflation forecasts?," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.
    2. Clements, Michael P., 2014. "Probability distributions or point predictions? Survey forecasts of US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 30(1), pages 99-117.
    3. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    4. Allan W. Gregory & Hui Zhu, 2014. "Testing the value of lead information in forecasting monthly changes in employment from the Bureau of Labor Statistics," Applied Financial Economics, Taylor & Francis Journals, vol. 24(7), pages 505-514, April.
    5. Michael P. Clements, 2022. "Individual forecaster perceptions of the persistence of shocks to GDP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 640-656, April.
    6. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    7. Roccazzella, Francesco & Candelon, Bertrand, 2022. "Should we care about ECB inflation expectations?," LIDAM Discussion Papers LFIN 2022004, Université catholique de Louvain, Louvain Finance (LFIN).
    8. Philip Hans Franses, 2020. "Correcting the January optimism effect," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 927-933, September.
    9. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    10. Sinha, Rajesh Kumar, 2021. "Macro disagreement and analyst forecast properties," Journal of Contemporary Accounting and Economics, Elsevier, vol. 17(1).
    11. Raffaella Giacomini & Vasiliki Skreta & Javier Turen, 2015. "Models, Inattention and Expectation Updates," Discussion Papers 1602, Centre for Macroeconomics (CFM).
    12. Michael P. Clements, 2018. "Do Macroforecasters Herd?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(2-3), pages 265-292, March.
    13. Sheng, Xuguang (Simon) & Thevenot, Maya, 2015. "Quantifying differential interpretation of public information using financial analysts’ earnings forecasts," International Journal of Forecasting, Elsevier, vol. 31(2), pages 515-530.
    14. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
    15. Li, You & Tay, Anthony, 2021. "The role of macroeconomic and policy uncertainty in density forecast dispersion," Journal of Macroeconomics, Elsevier, vol. 67(C).
    16. Franses, Ph.H.B.F., 2019. "Professional Forecasters and January," Econometric Institute Research Papers EI2019-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Giulia Piccillo & Poramapa Poonpakdee, 2021. "Effects of Macro Uncertainty on Mean Expectation and Subjective Uncertainty: Evidence from Households and Professional Forecasters," CESifo Working Paper Series 9486, CESifo.
    18. Víctor López-Pérez, 2017. "Do professional forecasters behave as if they believed in the New Keynesian Phillips Curve for the euro area?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 147-174, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mcb:jmoncb:v:43:y:2011:i:5:p:993-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0022-2879 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.