IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/814.html
   My bibliography  Save this article

A Neumann-féle játékelmélet
[Neumanns game theory]

Author

Listed:
  • Kóczy Á., László

Abstract

Jelen dolgozat célja Neumann János játékelméleti munkásságának bemutatása, eredményeinek matematikatörténeti elhelyezése. Részletesen foglalkozunk a híres minimax tétellel, illetve a Neumann-Morgenstern-féle megoldással, ennek kritikáival és az utóbbi több mint ötven év alatt javasolt alternatív megoldáskoncepcióival. Beszámolunk a játékelméleti kutatás jelenlegi helyzetéről, az aktuális problémákról és alkalmazásokról. Journal of Economic Literature (JEL) kód: C7, N01.

Suggested Citation

  • Kóczy Á., László, 2006. "A Neumann-féle játékelmélet [Neumanns game theory]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 31-45.
  • Handle: RePEc:ksa:szemle:814
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=814
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Harsanyi & Reinhard Selten, 1988. "A General Theory of Equilibrium Selection in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262582384, April.
    2. M. Maschler & B. Peleg & L. S. Shapley, 1979. "Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 303-338, November.
    3. Dutta, Bhaskar & Ray, Debraj & Sengupta, Kunal & Vohra, Rajiv, 1989. "A consistent bargaining set," Journal of Economic Theory, Elsevier, vol. 49(1), pages 93-112, October.
    4. Koczy, Laszlo A. & Lauwers, Luc, 2007. "The minimal dominant set is a non-empty core-extension," Games and Economic Behavior, Elsevier, vol. 61(2), pages 277-298, November.
    5. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    6. Sengupta, Abhijit & Sengupta, Kunal, 1994. "Viable Proposals," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(2), pages 347-359, May.
    7. Konishi, Hideo & Ray, Debraj, 2003. "Coalition formation as a dynamic process," Journal of Economic Theory, Elsevier, vol. 110(1), pages 1-41, May.
    8. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    9. Maschler, Michael, 1992. "The bargaining set, kernel, and nucleolus," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 18, pages 591-667, Elsevier.
    10. Peleg, Bezalel, 1992. "Axiomatizations of the core," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 13, pages 397-412, Elsevier.
    11. Effrosyni Diamantoudi & Licun Xue, 2003. "Farsighted stability in hedonic games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 21(1), pages 39-61, August.
    12. R. M. Thrall & W. F. Lucas, 1963. "N‐person games in partition function form," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 10(1), pages 281-298, March.
    13. M. P. Espinosa & E. Inarra, 2000. "Von Neumann And Morgenstern Stable Sets In A Cournot Merger System," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 29-45.
    14. Zhao, Jingang, 1992. "The hybrid solutions of an N-person game," Games and Economic Behavior, Elsevier, vol. 4(1), pages 145-160, January.
    15. Lucas, William F., 1992. "Von Neumann-Morgenstern stable sets," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 17, pages 543-590, Elsevier.
    16. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    17. Kannai, Yakar, 1992. "The core and balancedness," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 12, pages 355-395, Elsevier.
    18. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    19. Ray, Debraj, 1989. "Credible Coalitions and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 185-187.
    20. Zhou Lin, 1994. "A New Bargaining Set of an N-Person Game and Endogenous Coalition Formation," Games and Economic Behavior, Elsevier, vol. 6(3), pages 512-526, May.
    21. Greenberg, Joseph, 1992. "On the Sensitivity of von Neumann and Morgenstern Abstract Stable Sets: The Stable and the Individual Stable Bargaining Set," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 41-55.
    22. Licun Xue, 1998. "Coalitional stability under perfect foresight," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 11(3), pages 603-627.
    23. Mary A. Dimand & Robert W. Dimand (ed.), 1997. "The Foundations of Game Theory," Books, Edward Elgar Publishing, volume 0, number 909.
    24. repec:ebl:ecbull:v:28:y:2002:i:8:p:a0 is not listed on IDEAS
    25. Morgenstern, Oskar, 1976. "The Collaboration between Oskar Morgenstern and John von Neumann on the Theory of Games," Journal of Economic Literature, American Economic Association, vol. 14(3), pages 805-816, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kóczy Á., László & Pintér, Miklós, 2011. "Az ellenzék ereje - általánosított súlyozott szavazási játékok [Minority power - generalized weighted voting games]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 543-551.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, March.
    2. Ray, Debraj & Vohra, Rajiv, 2015. "Coalition Formation," Handbook of Game Theory with Economic Applications,, Elsevier.
    3. Einy, Ezra & Holzman, Ron & Monderer, Dov & Shitovitz, Benyamin, 1997. "Core Equivalence Theorems for Infinite Convex Games," Journal of Economic Theory, Elsevier, vol. 76(1), pages 1-12, September.
    4. Serrano, Roberto, 1997. "Reinterpreting the Kernel," Journal of Economic Theory, Elsevier, vol. 77(1), pages 58-80, November.
    5. Barbera, Salvador & Gerber, Anke, 2003. "Corrigendum to "On coalition formation: durable coalition structures": [Mathematical Social Sciences 45 (2003) 185-203]," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 355-356, December.
    6. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    7. Diamantoudi, Effrosyni & Xue, Licun, 2007. "Coalitions, agreements and efficiency," Journal of Economic Theory, Elsevier, vol. 136(1), pages 105-125, September.
    8. Dutta, Bhaskar & Vartiainen, Hannu, 2020. "Coalition formation and history dependence," Theoretical Economics, Econometric Society, vol. 15(1), January.
    9. Debraj Ray & Rajiv Vohra, 2015. "The Farsighted Stable Set," Econometrica, Econometric Society, vol. 83(3), pages 977-1011, May.
    10. Elena Iñarra & Roberto Serrano & Ken-Ichi Shimomura, 2020. "The Nucleolus, the Kernel, and the Bargaining Set: An Update," Revue économique, Presses de Sciences-Po, vol. 71(2), pages 225-266.
    11. Serrano, Roberto & Vohra, Rajiv, 2002. "Bargaining and Bargaining Sets," Games and Economic Behavior, Elsevier, vol. 39(2), pages 292-308, May.
    12. Jingang Zhao, 2008. "The Maximal Payoff and Coalition Formation in Coalitional Games," Working Papers 2008.27, Fondazione Eni Enrico Mattei.
    13. Kimya, Mert, 2020. "Equilibrium coalitional behavior," Theoretical Economics, Econometric Society, vol. 15(2), May.
    14. Bhaskar Dutta & Hannu Vartiainen, 2018. "Coalition Formation and History Dependence," Working Papers 1006, Ashoka University, Department of Economics.
    15. Dominik Karos, 2015. "Stable partitions for games with non-transferable utilities and externalities," Economics Series Working Papers 741, University of Oxford, Department of Economics.
    16. Serrano, Roberto & Shimomura, Ken-Ichi, 1998. "Beyond Nash Bargaining Theory: The Nash Set," Journal of Economic Theory, Elsevier, vol. 83(2), pages 286-307, December.
    17. Luo, Xiao, 2001. "General systems and [phiv]-stable sets -- a formal analysis of socioeconomic environments," Journal of Mathematical Economics, Elsevier, vol. 36(2), pages 95-109, November.
    18. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    19. Yi-You Yang, 2020. "On the characterizations of viable proposals," Theory and Decision, Springer, vol. 89(4), pages 453-469, November.
    20. Sergiu Hart & Andreu Mas-Colell, 2008. "Cooperative Games in Strategic Form," Discussion Paper Series dp484, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.

    More about this item

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • N01 - Economic History - - General - - - Development of the Discipline: Historiographical; Sources and Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.