IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/550.html
   My bibliography  Save this article

Portfóliószemléletű hitelkockázat szimulációs meghatározása
[Simulated determination of credit risk in portfolio terms]

Author

Listed:
  • Janecskó, Balázs

Abstract

A kereskedelmi bankok nyereséges működését leginkább veszélyeztető kockázattípus a hitelkockázat, amely nagyon leegyszerűsítve abból fakad, hogy az adósok nem teljesítik a bankkal szemben fennálló kötelezettségeiket. Egy esetleges nem teljesítési esemény következtében a bank tényleges hitelezési vesztesége a minősített kintlevőség kezelése (work-out) után válik pontosan számszerűsíthetővé. Felmerül a kérdés, hogy adott időhorizonton (például egy év alatt) és adott valószínűség mellett maximálisan mekkora lehet a bank teljes hitelportfóliójában keletkező veszteség, valamint a kockázat hogyan oszlik meg a különböző szempontok szerint kialakítható részportfóliók között, illetve az egyes hitelek hogyan járulnak hozzá a teljes portfólió kockázatához. A válaszhoz első lépésben egy közgazdasági modellt kell alkotni, amely leírja a vállalatok csődbemeneteli folyamatát, a csődesemények közötti kölcsönhatásokat, illetve a csőd utáni fedezetértékesítési folyamatot. A második lépésben a modell matematikai formalizálása történik meg. Végül pedig a matematikai problémát kell megoldanunk és az eredményeket közgazdaságilag interpretálnunk. A cikk olyan közgazdasági modellt mutat be, amely rendkívül flexibilis, és számos más - a hitelkockázati problémától nagyon eltérő - feladat megoldásában is hasznos lehet. A kapcsolódó matematikai modell azonban csak nagyon speciális esetekben oldható meg képletekkel, ezért a szerző "kézi számolások" helyett magát a közgazdasági folyamatot (a csődesemények véletlenszerűségét) szimulálta számítógéppel, és így vizsgálta meg a hitelportfóliót érő teljes veszteség statisztikáját.* Journal of Economic Literature (JEL) kód: C10, C15, G10, G11, G21, G33.

Suggested Citation

  • Janecskó, Balázs, 2002. "Portfóliószemléletű hitelkockázat szimulációs meghatározása [Simulated determination of credit risk in portfolio terms]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 664-676.
  • Handle: RePEc:ksa:szemle:550
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=550
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    2. Winfried G. Hallerbach, 1999. "Decomposing Portfolio Value-at-Risk: A General Analysis," Tinbergen Institute Discussion Papers 99-034/2, Tinbergen Institute.
    3. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    4. Sundt, Bjørn & Jewell, William S., 1981. "Further Results on Recursive Evaluation of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 27-39, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    2. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
    3. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Jing Yao, 2017. "How robust is the value-at-risk of credit risk portfolios?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 507-534, May.
    4. Alexandre Kurth & Dirk Tasche, 2002. "Credit Risk Contributions to Value-at-Risk and Expected Shortfall," Papers cond-mat/0207750, arXiv.org, revised Nov 2002.
    5. Papalamprou, Konstantinos & Antoniou, Paschalis, 2019. "Estimation of capital requirements in downturn conditions via the CBV model: Evidence from the Greek banking sector," Operations Research Perspectives, Elsevier, vol. 6(C).
    6. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, July.
    7. A.Hernández-Bastida & J. M. Pérez–Sánchez & E. Gómez-Deniz, 2007. "Bayesian Analysis Of The Compound Collective Model: The Net Premium Principle With Exponential Poisson And Gamma–Gamma Distributions," FEG Working Paper Series 07/03, Faculty of Economics and Business (University of Granada).
    8. Wu, Xueyuan & Yuen, Kam C., 2003. "A discrete-time risk model with interaction between classes of business," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 117-133, August.
    9. Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo & Venegas-Martínez, Francisco, 2015. "Riesgo operativo en el sector salud en Colombia [Operational Risk in the Health Sector in Colombia]," MPRA Paper 63149, University Library of Munich, Germany.
    10. Janecskó, Balázs, 2004. "A Bázel II. belső minősítésen alapuló módszerének közgazdasági-matematikai háttere és a granularitási korrekció elmélete [The economic and mathematical background to the Basel II internal ratings-b," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 218-234.
    11. Brendan P. M. McCabe & Christopher L. Skeels, 2020. "Distributions You Can Count On …But What’s the Point?," Econometrics, MDPI, vol. 8(1), pages 1-36, March.
    12. Marios N. Kyriacou, 2015. "Credit Risk Measurement in Financial Institutions: Going Beyond Regulatory Compliance," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 31-72, June.
    13. James D. Englehardt & Chengjun Peng, 1996. "A Bayesian Benefit‐Risk Model Applied to the South Florida Building Code," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 81-91, February.
    14. den Iseger, P. W. & Smith, M. A. J. & Dekker, R., 1997. "Computing compound distributions faster!," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 23-34, June.
    15. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    16. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    17. Sundt, Bjorn, 2003. "Some recursions for moments of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 487-496, December.
    18. Duarte-López, Ariel & Pérez-Casany, Marta & Valero, Jordi, 2020. "The Zipf–Poisson-stopped-sum distribution with an application for modeling the degree sequence of social networks," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    19. Anh Ninh, 2021. "Robust newsvendor problems with compound Poisson demands," Annals of Operations Research, Springer, vol. 302(1), pages 327-338, July.
    20. Cordelia Rudolph & Uwe Schmock, 2020. "Multivariate Collective Risk Model: Dependent Claim Numbers and Panjer’s Recursion," Risks, MDPI, vol. 8(2), pages 1-31, May.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.