IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v20y1997i1p23-34.html
   My bibliography  Save this article

Computing compound distributions faster!

Author

Listed:
  • den Iseger, P. W.
  • Smith, M. A. J.
  • Dekker, R.

Abstract

No abstract is available for this item.

Suggested Citation

  • den Iseger, P. W. & Smith, M. A. J. & Dekker, R., 1997. "Computing compound distributions faster!," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 23-34, June.
  • Handle: RePEc:eee:insuma:v:20:y:1997:i:1:p:23-34
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(97)00002-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panjer, H. H. & Lutek, B. W., 1983. "Practical aspects of stop-loss calculations," Insurance: Mathematics and Economics, Elsevier, vol. 2(3), pages 159-177, July.
    2. Kuon, S. & Radtke, M. & Reich, A., 1993. "An Appropriate Way to Switch from the Individual Risk Model to the Collective One," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 23-54, May.
    3. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    4. Sundt, Bjørn & Jewell, William S., 1981. "Further Results on Recursive Evaluation of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 27-39, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomes-Gonçalves, Erika & Gzyl, Henryk & Mayoral, Silvia, 2016. "Loss data analysis: Analysis of the sample dependence in density reconstruction by maxentropic methods," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 145-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    2. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    3. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
    4. Marios N. Kyriacou, 2015. "Credit Risk Measurement in Financial Institutions: Going Beyond Regulatory Compliance," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 31-72, June.
    5. James D. Englehardt & Chengjun Peng, 1996. "A Bayesian Benefit‐Risk Model Applied to the South Florida Building Code," Risk Analysis, John Wiley & Sons, vol. 16(1), pages 81-91, February.
    6. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    7. Janecskó, Balázs, 2002. "Portfóliószemléletű hitelkockázat szimulációs meghatározása [Simulated determination of credit risk in portfolio terms]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 664-676.
    8. Anh Ninh, 2021. "Robust newsvendor problems with compound Poisson demands," Annals of Operations Research, Springer, vol. 302(1), pages 327-338, July.
    9. Aleksandr Beknazaryan & Peter Adamic, 2022. "On a stochastic order induced by an extension of Panjer’s family of discrete distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 67-91, January.
    10. Yang, Jingping & Zhou, Shulin & Zhang, Zhenyong, 2005. "The compound Poisson random variable's approximation to the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 57-77, February.
    11. Ambagaspitiya, R. S., 1995. "A family of discrete distributions," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 107-127, May.
    12. A.Hernández-Bastida & J. M. Pérez–Sánchez & E. Gómez-Deniz, 2007. "Bayesian Analysis Of The Compound Collective Model: The Net Premium Principle With Exponential Poisson And Gamma–Gamma Distributions," FEG Working Paper Series 07/03, Faculty of Economics and Business (University of Granada).
    13. Wu, Xueyuan & Yuen, Kam C., 2003. "A discrete-time risk model with interaction between classes of business," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 117-133, August.
    14. Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo & Venegas-Martínez, Francisco, 2015. "Riesgo operativo en el sector salud en Colombia [Operational Risk in the Health Sector in Colombia]," MPRA Paper 63149, University Library of Munich, Germany.
    15. Brendan P. M. McCabe & Christopher L. Skeels, 2020. "Distributions You Can Count On …But What’s the Point?," Econometrics, MDPI, vol. 8(1), pages 1-36, March.
    16. Sundt, Bjorn, 2003. "Some recursions for moments of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 487-496, December.
    17. Duarte-López, Ariel & Pérez-Casany, Marta & Valero, Jordi, 2020. "The Zipf–Poisson-stopped-sum distribution with an application for modeling the degree sequence of social networks," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    18. Cordelia Rudolph & Uwe Schmock, 2020. "Multivariate Collective Risk Model: Dependent Claim Numbers and Panjer’s Recursion," Risks, MDPI, vol. 8(2), pages 1-31, May.
    19. Kitano, Masashi & Shimizu, Kunio & Ong, S.H., 2005. "The generalized Charlier series distribution as a distribution with two-step recursion," Statistics & Probability Letters, Elsevier, vol. 75(4), pages 280-290, December.
    20. Dhaene, Jan & Vandebroek, Martina, 1995. "Recursions for the individual model," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 31-38, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:20:y:1997:i:1:p:23-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.