IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1986.html
   My bibliography  Save this article

Pontozási rendszerek szimulációs összehasonlítása
[A simulatory comparison of the points systems]

Author

Listed:
  • Csató, László

Abstract

Egyéni preferencialisták aggregálásának elterjedt eszköze a pontozási rendszerek használata, amikor az egyes rangsorok minden pozíciója adott számú pontot ér, az aggregált sorrend pedig az alternatívák így összegyűjtött pontjai alapján alakul ki. Általában ezt az eljárást alkalmazzák több egymást követő versenyből álló sportbajnokságok eredményének meghatározására. Tanulmányunk ebben az összefüggésben vizsgálja a következő két, egyaránt elkerülendő esemény közötti átváltást: 1. a bajnoki cím korai megszerzése, már a sorozat utolsó néhány futama előtt ismertté válik a győztes kiléte; 2. a bajnok egyetlen versenyt sem nyer meg. Szimulációs megközelítés segítségével számszerűsítjük e kockázatokat a legrangosabb nemzetközi autóverseny, a Forma-1 négy történelmi pontozási rendszere esetében. Mindegyik versenyképesnek bizonyul a társadalmi választások elmélete által ajánlott, kedvező axiomatikus tulajdonsággal rendelkező mértani pontozással szemben. A jelenleg használt szabály észszerű kompromisszumnak tűnik a két veszély mérséklésére. Eredményeink hasznos adalékokkal szolgálnak a Forma-1 pontozási rendszereinek fejlődéséhez, és új szempontokkal gazdagítják az egyes pozíciókért járó pontok megválasztásának irodalmát.* Journal of Economic Literature (JEL) kód: C44, C63, Z20.

Suggested Citation

  • Csató, László, 2021. "Pontozási rendszerek szimulációs összehasonlítása [A simulatory comparison of the points systems]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 847-862.
  • Handle: RePEc:ksa:szemle:1986
    DOI: 10.18414/KSZ.2021.7-8.847
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1986
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2021.7-8.847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. László Csató, 2020. "Optimal Tournament Design: Lessons From the Men’s Handball Champions League," Journal of Sports Economics, , vol. 21(8), pages 848-868, December.
    2. Vincent Merlin, 2003. "The axiomatic characterization of majority voting and scoring rules," Post-Print halshs-00069506, HAL.
    3. Pavel Yu. Chebotarev & Elena Shamis, 1998. "Characterizations of scoring methodsfor preference aggregation," Annals of Operations Research, Springer, vol. 80(0), pages 299-332, January.
    4. Smith, John H, 1973. "Aggregation of Preferences with Variable Electorate," Econometrica, Econometric Society, vol. 41(6), pages 1027-1041, November.
    5. Graves T. & Reese C.S. & Fitzgerald M., 2003. "Hierarchical Models for Permutations: Analysis of Auto Racing Results," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 282-291, January.
    6. Shmuel Nitzan & Ariel Rubinstein, 1981. "A further characterization of Borda ranking method," Public Choice, Springer, vol. 36(1), pages 153-158, January.
    7. Stein, William E. & Mizzi, Philip J. & Pfaffenberger, Roger C., 1994. "A stochastic dominance analysis of ranked voting systems with scoring," European Journal of Operational Research, Elsevier, vol. 74(1), pages 78-85, April.
    8. Alejandro Corvalan, 2018. "How to rank rankings? Group performance in multiple-prize contests," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(2), pages 361-380, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L'aszl'o Csat'o, 2021. "A comparative study of scoring systems by simulations," Papers 2101.05744, arXiv.org, revised Jun 2022.
    2. László Csató, 2023. "A comparative study of scoring systems by simulations," Journal of Sports Economics, , vol. 24(4), pages 526-545, May.
    3. Aleksei Y. Kondratev & Alexander S. Nesterov, 2020. "Measuring majority power and veto power of voting rules," Public Choice, Springer, vol. 183(1), pages 187-210, April.
    4. Lederer, Patrick, 2024. "Bivariate scoring rules: Unifying the characterizations of positional scoring rules and Kemeny's rule," Journal of Economic Theory, Elsevier, vol. 218(C).
    5. Walter Bossert & Kotaro Suzumura, 2020. "Positionalist voting rules: a general definition and axiomatic characterizations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 85-116, June.
    6. Llamazares, Bonifacio, 2024. "Ranking voting systems and surrogate weights: Explicit formulas for centroid weights," European Journal of Operational Research, Elsevier, vol. 317(3), pages 967-976.
    7. O. Volij & M. Mahajne, 2020. "Pairwise Consensus And The Borda Rule," Working Papers 2016, Ben-Gurion University of the Negev, Department of Economics.
    8. António Osório, 2017. "Judgement and ranking: living with hidden bias," Annals of Operations Research, Springer, vol. 253(1), pages 501-518, June.
    9. Kelly, Jerry S. & Qi, Shaofang, 2019. "Balancedness of social choice correspondences," Mathematical Social Sciences, Elsevier, vol. 102(C), pages 59-67.
    10. Eyal Baharad & Leif Danziger, 2018. "Voting in Hiring Committees: Which "Almost" Rule is Optimal?," CESifo Working Paper Series 6851, CESifo.
    11. Baharad, Eyal & Danziger, Leif, 2018. "Voting in Hiring Committees: Which "Almost" Rule Is Optimal?," IZA Discussion Papers 11287, Institute of Labor Economics (IZA).
    12. Pivato, Marcus, 2013. "Variable-population voting rules," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 210-221.
    13. Walter Bossert & Kotaro Suzumura, 2017. "The greatest unhappiness of the least number," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(3), pages 637-655, December.
    14. László Csató, 2019. "An impossibility theorem for paired comparisons," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 497-514, June.
    15. Pivato, Marcus, 2014. "Formal utilitarianism and range voting," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 50-56.
    16. Martin Lackner & Piotr Skowron, 2017. "Consistent Approval-Based Multi-Winner Rules," Papers 1704.02453, arXiv.org, revised Oct 2019.
    17. Florian Brandl & Dominik Peters, 2019. "An axiomatic characterization of the Borda mean rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(4), pages 685-707, April.
    18. Baharad, Eyal & Danziger, Leif, 2018. "Voting in Hiring Committees: Which "Almost" Rule Is Optimal?," GLO Discussion Paper Series 185, Global Labor Organization (GLO).
    19. Mahajne, Muhammad & Volij, Oscar, 2022. "Pairwise consensus and the Borda rule," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 17-21.
    20. Raúl Pérez-Fernández & Bernard De Baets, 2017. "Recursive Monotonicity of the Scorix: Borda Meets Condorcet," Group Decision and Negotiation, Springer, vol. 26(4), pages 793-813, July.

    More about this item

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Z20 - Other Special Topics - - Sports Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.