IDEAS home Printed from https://ideas.repec.org/a/ksa/szemle/1784.html
   My bibliography  Save this article

Portfólióallokáció csődveszély esetén, korlátolt felelősség mellett
[Portfolio allocation in case of failure risk in the presence of limited liability]

Author

Listed:
  • Bihary, Zsolt
  • Víg, Attila András

Abstract

Modellünkben dinamikus portfólióoptimalizálási feladatot oldunk meg. A kockázatos eszköz ugró diffúziós folyamatot követ, amely lefele ugrásokra képes, míg a kockázatmentes a szokásos bankbetét. Az irodalomban az optimalizálás során csak olyan stratégiákat vesznek figyelembe, amelyek mellett a portfólió értékfolyamata nem lehet negatív. Tanulmányunkban szakítunk ezzel a hagyománnyal, megengedünk csődveszéllyel fenyegető stratégiákat is, amikor a befektető korlátolt felelősséget vállal, így csőd esetén nemcsak saját vagyonát veszíti el teljes mértékben, de a hitelező is kénytelen veszteséget elkönyvelni. A hitelező ennek megfelelően kockázati felárat állapít meg hitelnyújtáskor, amit endogén módon figyelembe veszünk. Ha a kockázatelutasítás paramétere elegendően kicsi, akkor az általunk javasolt korlátolt felelősséggel értelmezhetővé válnak nagy tőkeáttételes stratégiák, és mutatunk olyan realisztikus eseteket, ahol ezek optimálisnak bizonyulnak. Nagy ugrások esetén az optimális tőkeáttétel nem folytonos módon függ a külső paraméterektől.* Journal of Economic Literature (JEL) kód: C22, C61, G11.

Suggested Citation

  • Bihary, Zsolt & Víg, Attila András, 2018. "Portfólióallokáció csődveszély esetén, korlátolt felelősség mellett [Portfolio allocation in case of failure risk in the presence of limited liability]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 711-725.
  • Handle: RePEc:ksa:szemle:1784
    DOI: 10.18414/KSZ.2018.7-8.711
    as

    Download full text from publisher

    File URL: http://www.kszemle.hu/tartalom/letoltes.php?id=1784
    Download Restriction: Registration and subscription. 3-month embargo period to non-subscribers.

    File URL: https://libkey.io/10.18414/KSZ.2018.7-8.711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bellamy, Nadine, 2001. "Wealth optimization in an incomplete market driven by a jump-diffusion process," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 259-287, April.
    2. Ralf Korn & Paul Wilmott, 2002. "Optimal Portfolios Under The Threat Of A Crash," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 171-187.
    3. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerstin Dächert & Ria Grindel & Elisabeth Leoff & Jonas Mahnkopp & Florian Schirra & Jörg Wenzel, 2022. "Multicriteria asset allocation in practice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 349-373, June.
    2. Belak, Christoph & Christensen, Sören & Menkens, Olaf, 2014. "Worst-case optimal investment with a random number of crashes," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 140-148.
    3. Salmerón Garrido, José Antonio & Nunno, Giulia Di & D'Auria, Bernardo, 2022. "Before and after default: information and optimal portfolio via anticipating calculus," DES - Working Papers. Statistics and Econometrics. WS 35411, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Laura Pasin & Tiziano Vargiolu, 2010. "Optimal Portfolio for CRRA Utility Functions when Risky Assets are Exponential Additive Processes," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 39(1‐2), pages 65-90, February.
    5. repec:dau:papers:123456789/5590 is not listed on IDEAS
    6. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    7. Frank Thomas Seifried, 2010. "Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 559-579, August.
    8. Xiang Lin & Chunhong Zhang & Tak Siu, 2012. "Stochastic differential portfolio games for an insurer in a jump-diffusion risk process," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(1), pages 83-100, February.
    9. Jos'e A. Salmer'on & Giulia Di Nunno & Bernardo D'Auria, 2022. "Before and after default: information and optimal portfolio via anticipating calculus," Papers 2208.07163, arXiv.org, revised May 2023.
    10. Engler, Tina & Korn, Ralf, 2014. "Worst-case portfolio optimization under stochastic interest rate risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(4), pages 469-488.
    11. Tina Engler & Ralf Korn, 2014. "Worst-Case Portfolio Optimization under Stochastic Interest Rate Risk," Risks, MDPI, vol. 2(4), pages 1-20, December.
    12. Francesco MENONCIN, 2001. "How to Manage Inflation Risk in an Asset Allocation Problem : an Algebric Aproximated Solution," LIDAM Discussion Papers IRES 2001035, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    13. A Chunxiang & Shao Yi, 2018. "Worst-Case Investment Strategy with Delay," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 35-57, February.
    14. Monica Paiella, 2007. "The Forgone Gains of Incomplete Portfolios," The Review of Financial Studies, Society for Financial Studies, vol. 20(5), pages 1623-1646, 2007 13.
    15. Francisco Gomes & Alexander Michaelides, 2003. "Portfolio Choice With Internal Habit Formation: A Life-Cycle Model With Uninsurable Labor Income Risk," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 6(4), pages 729-766, October.
    16. Maite Cubas‐Díaz & Miguel Ángel Martínez Sedano, 2018. "Measures for Sustainable Investment Decisions and Business Strategy – A Triple Bottom Line Approach," Business Strategy and the Environment, Wiley Blackwell, vol. 27(1), pages 16-38, January.
    17. Florent Gallien & Serge Kassibrakis & Semyon Malamud, 2018. "Hedge or Rebalance: Optimal Risk Management with Transaction Costs," Risks, MDPI, vol. 6(4), pages 1-14, October.
    18. Anne Lavigne, 2006. "Gouvernance et investissement des fonds de pension privés aux Etats-Unis," Working Papers halshs-00081401, HAL.
    19. An Chen & Thai Nguyen & Thorsten Sehner, 2022. "Unit-Linked Tontine: Utility-Based Design, Pricing and Performance," Risks, MDPI, vol. 10(4), pages 1-27, April.
    20. Alan J. Auerbach, 1981. "Evaluating the Taxation of Risky Assets," NBER Working Papers 0806, National Bureau of Economic Research, Inc.
    21. Hong, Claire Yurong & Lu, Xiaomeng & Pan, Jun, 2021. "FinTech adoption and household risk-taking," BOFIT Discussion Papers 14/2021, Bank of Finland Institute for Emerging Economies (BOFIT).

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ksa:szemle:1784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Odon Sok (email available below). General contact details of provider: http://www.kszemle.hu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.