IDEAS home Printed from https://ideas.repec.org/a/kea/keappr/ker-20210701-37-2-07.html
   My bibliography  Save this article

Efficient Mimicking Portfolios in Asset Pricing Tests

Author

Listed:
  • Jinyong Kim

    (University of Seoul)

  • Kun Ho Kim

    (Yeshiva University)

  • Jeong Hwan Lee

    (Hanyang University)

Abstract

The classic cross-sectional regression (CSR) and mimicking portfolio (MIM) procedures estimate factor risk premia on a test asset span and the resulting tests of asset pricing models are performed with reduced degrees of freedom. Although we can restrict the risk premia of traded factors to equal expected returns, imposing such restrictions on nontraded factors is difficult, which may prevent full performance evaluation. We suggest testing with efficient MIMs that project factors onto a return space spanned by test assets and benchmark traded factors. The generalized method of moments (GMM) tests show that this approach generates more powerful tests and fair comparison against a benchmark model.

Suggested Citation

  • Jinyong Kim & Kun Ho Kim & Jeong Hwan Lee, 2021. "Efficient Mimicking Portfolios in Asset Pricing Tests," Korean Economic Review, Korean Economic Association, vol. 37, pages 399-417.
  • Handle: RePEc:kea:keappr:ker-20210701-37-2-07
    as

    Download full text from publisher

    File URL: http://keapaper.kea.ne.kr/RePEc/kea/keappr/KER-20210701-37-2-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Raymond Kan & Chu Zhang, 1999. "Two‐Pass Tests of Asset Pricing Models with Useless Factors," Journal of Finance, American Finance Association, vol. 54(1), pages 203-235, February.
    3. Huberman, Gur & Kandel, Shmuel & Stambaugh, Robert F, 1987. "Mimicking Portfolios and Exact Arbitrage Pricing," Journal of Finance, American Finance Association, vol. 42(1), pages 1-9, March.
    4. Hanno N. Lustig & Stijn G. Van Nieuwerburgh, 2005. "Housing Collateral, Consumption Insurance, and Risk Premia: An Empirical Perspective," Journal of Finance, American Finance Association, vol. 60(3), pages 1167-1219, June.
    5. Lukas Menkhoff & Lucio Sarno & Maik Schmeling & Andreas Schrimpf, 2012. "Carry Trades and Global Foreign Exchange Volatility," Journal of Finance, American Finance Association, vol. 67(2), pages 681-718, April.
    6. Balduzzi, Pierluigi & Robotti, Cesare, 2008. "Mimicking Portfolios, Economic Risk Premia, and Tests of Multi-Beta Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 354-368.
    7. Breeden, Douglas T., 1979. "An intertemporal asset pricing model with stochastic consumption and investment opportunities," Journal of Financial Economics, Elsevier, vol. 7(3), pages 265-296, September.
    8. Martin Lettau & Sydney Ludvigson, 2001. "Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia Are Time-Varying," Journal of Political Economy, University of Chicago Press, vol. 109(6), pages 1238-1287, December.
    9. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    10. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    11. Frank Kleibergen & Zhaoguo Zhan, 2020. "Robust Inference for Consumption‐Based Asset Pricing," Journal of Finance, American Finance Association, vol. 75(1), pages 507-550, February.
    12. Frank Kleibergen & Zhaoguo Zhan, 2018. "Identification-Robust Inference on Risk Premia of Mimicking Portfolios of Non-traded Factors," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 155-190.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cisil Sarisoy & Bas J.M. Werker, 2024. "Linear Factor Models and the Estimation of Expected Returns," Finance and Economics Discussion Series 2024-014, Board of Governors of the Federal Reserve System (U.S.).
    2. Kim, Jinyong & Kim, Kun Ho & Lee, Jeong Hwan, 2021. "Cross-sectional tests of asset pricing models with full-rank mimicking portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    3. Semenov, Andrei, 2021. "Measuring the stock's factor beta and identifying risk factors under market inefficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 635-649.
    4. João Pedro Pereira & António Rua, 2018. "Asset Pricing with a Bank Risk Factor," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(5), pages 993-1032, August.
    5. Laurinaityte, Nora & Meinerding, Christoph & Schlag, Christian & Thimme, Julian, 2024. "GMM weighting matrices in cross-sectional asset pricing tests," Journal of Banking & Finance, Elsevier, vol. 162(C).
    6. Roussanov, Nikolai, 2014. "Composition of wealth, conditioning information, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 111(2), pages 352-380.
    7. Zhang, Xiang & Liu, Yangyi & Wu, Kun & Maillet, Bertrand, 2021. "Tradable or nontradable factors—what does the Hansen–Jagannathan distance tell us?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 853-879.
    8. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    9. Hanno Lustig & Adrien Verdelhan, 2007. "The Cross Section of Foreign Currency Risk Premia and Consumption Growth Risk," American Economic Review, American Economic Association, vol. 97(1), pages 89-117, March.
    10. Ludvigson, Sydney C., 2013. "Advances in Consumption-Based Asset Pricing: Empirical Tests," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 799-906, Elsevier.
    11. Kris Jacobs & Kevin Q. Wang, 2002. "Idiosyncratic Consumption Risk and the Cross-Section of Asset Returns," CIRANO Working Papers 2002s-11, CIRANO.
    12. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    13. Frank Kleibergen & Zhaoguo Zhan, 2022. "Misspecification and Weak Identification in Asset Pricing," Papers 2206.13600, arXiv.org.
    14. Huang, Lin & Wu, Jia & Zhang, Rui, 2014. "Exchange risk and asset returns: A theoretical and empirical study of an open economy asset pricing model," Emerging Markets Review, Elsevier, vol. 21(C), pages 96-116.
    15. Ravi Jagannathan & Srikant Marakani & Hitoshi Takehara & Yong Wang, 2012. "Calendar Cycles, Infrequent Decisions, and the Cross Section of Stock Returns," Management Science, INFORMS, vol. 58(3), pages 507-522, March.
    16. repec:pri:wwseco:dp229 is not listed on IDEAS
    17. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda & Melin, Olena, 2023. "Identification-robust beta pricing, spanning, mimicking portfolios, and the benchmark neutrality of catastrophe bonds," Journal of Econometrics, Elsevier, vol. 236(1).
    18. Adrian, Tobias & Franzoni, Francesco, 2009. "Learning about beta: Time-varying factor loadings, expected returns, and the conditional CAPM," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 537-556, September.
    19. Raymond Kan & Cesare Robotti & Jay Shanken, 2013. "Pricing Model Performance and the Two‐Pass Cross‐Sectional Regression Methodology," Journal of Finance, American Finance Association, vol. 68(6), pages 2617-2649, December.
    20. Borup, Daniel & Schütte, Erik Christian Montes, 2022. "Asset pricing with data revisions," Journal of Financial Markets, Elsevier, vol. 59(PB).
    21. Shanken, Jay & Zhou, Guofu, 2007. "Estimating and testing beta pricing models: Alternative methods and their performance in simulations," Journal of Financial Economics, Elsevier, vol. 84(1), pages 40-86, April.

    More about this item

    Keywords

    Asset Pricing Test; Nontraded Factor; Efficient Mimicking Portfolio; Power;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kea:keappr:ker-20210701-37-2-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: KEA (email available below). General contact details of provider: https://edirc.repec.org/data/keaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.