IDEAS home Printed from https://ideas.repec.org/a/kea/keappr/ker-20190701-35-2-08.html
   My bibliography  Save this article

Deciphering Monetary Policy Board Minutes with Text Mining: The Case of South Korea

Author

Listed:
  • Young Joon Lee

    (Yonsei University)

  • Soohyon Kim

    (Yonsei University)

  • Ki Young Park

    (Yonsei University)

Abstract

We quantify the Monetary Policy Board minutes of the Bank of Korea (BOK) by using text mining. We propose a novel approach that uses a field-specific Korean dictionary and contiguous sequences of words (n-grams) to capture the subtlety of central bank communications. Our text-based indicator helps explain the current and future BOK monetary policy decisions when considering an augmented Taylor rule, suggesting that it contains additional information beyond the currently available macroeconomic variables. In explaining the current and future monetary policy decisions, our indicator remarkably outperforms English-based textual classifications, a media-based measure of economic policy uncertainty, and a data-based measure of macroeconomic uncertainty. Our empirical results also emphasize the importance of using a field-specific dictionary and the original Korean text.

Suggested Citation

  • Young Joon Lee & Soohyon Kim & Ki Young Park, 2019. "Deciphering Monetary Policy Board Minutes with Text Mining: The Case of South Korea," Korean Economic Review, Korean Economic Association, vol. 35, pages 471-511.
  • Handle: RePEc:kea:keappr:ker-20190701-35-2-08
    as

    Download full text from publisher

    File URL: http://keapaper.kea.ne.kr/RePEc/kea/keappr/KER-20190701-35-2-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nyman, Rickard & Kapadia, Sujit & Tuckett, David, 2021. "News and narratives in financial systems: Exploiting big data for systemic risk assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
    3. Stephen Hansen & Michael McMahon, 2016. "Shocking Language: Understanding the Macroeconomic Effects of Central Bank Communication," NBER Chapters, in: NBER International Seminar on Macroeconomics 2015, National Bureau of Economic Research, Inc.
    4. Picault, Matthieu & Renault, Thomas, 2017. "Words are not all created equal: A new measure of ECB communication," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 136-156.
    5. Soderlind, Paul & Svensson, Lars, 1997. "New techniques to extract market expectations from financial instruments," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 383-429, October.
    6. Annette Meinusch & Peter Tillmann, 2017. "Quantitative Easing and Tapering Uncertainty: Evidence from Twitter," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 227-258, December.
    7. Bholat, David & Brookes, James & Cai, Chris & Grundy, Katy & Lund, Jakob, 2017. "Sending firm messages: text mining letters from PRA supervisors to banks and building societies they regulate," Bank of England working papers 688, Bank of England.
    8. McLaren, Nick & Shanbhogue, Rachana, 2011. "Using internet search data as economic indicators," Bank of England Quarterly Bulletin, Bank of England, vol. 51(2), pages 134-140.
    9. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    10. Hamza Bennani & Matthias Neuenkirch, 2017. "The (home) bias of European central bankers: new evidence based on speeches," Applied Economics, Taylor & Francis Journals, vol. 49(11), pages 1114-1131, March.
    11. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    12. Matthieu Picault & Thomas Renault, 2017. "Words are not all created equal: A new measure of ECB communication," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205121, HAL.
    13. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    14. Jegadeesh, Narasimhan & Wu, Di, 2013. "Word power: A new approach for content analysis," Journal of Financial Economics, Elsevier, vol. 110(3), pages 712-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niţoi, Mihai & Pochea, Maria-Miruna & Radu, Ştefan-Constantin, 2023. "Unveiling the sentiment behind central bank narratives: A novel deep learning index," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
    2. Babatunde Samson Omotosho, 2020. "Central Bank Communication In Ghana: Insights From A Text Mining Analysis," Noble International Journal of Economics and Financial Research, Noble Academic Publsiher, vol. 5(1), pages 01-13, January.
    3. Amrendra Pandey & Jagadish Shettigar & Amarnath Bose, 2021. "Evaluation of the Inflation Forecasting Process of the Reserve Bank of India: A Text Analysis Approach," SAGE Open, , vol. 11(3), pages 21582440211, July.
    4. Omotosho, Babatunde S., 2020. "Central Bank Communication during Economic Recessions: Evidence from Nigeria," MPRA Paper 99655, University Library of Munich, Germany.
    5. Omotosho, Babatunde S. & Tumala, Mohammed M., 2019. "A Text Mining Analysis of Central Bank Monetary Policy Communication in Nigeria," MPRA Paper 98850, University Library of Munich, Germany.
    6. Carotta, Gianni & Mello, Miguel & Ponce, Jorge, 2023. "Monetary policy communication and inflation expectations: New evidence about tone and readability," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(3).
    7. Haryo Kuncoro, 2021. "Central Bank Communication and Policy Interest Rate," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(1), pages 76-91, January.
    8. Haryo Kuncoro & Gatot Nazir Ahmad & Dianta Sebayang, 2021. "A textual analysis of central bank communication the case of Indonesia," Economics Bulletin, AccessEcon, vol. 41(3), pages 2158-2172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
    2. Mikael Apel & Marianna Blix Grimaldi & Isaiah Hull, 2022. "How Much Information Do Monetary Policy Committees Disclose? Evidence from the FOMC's Minutes and Transcripts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1459-1490, August.
    3. Parle, Conor, 2022. "The financial market impact of ECB monetary policy press conferences — A text based approach," European Journal of Political Economy, Elsevier, vol. 74(C).
    4. Justyna Klejdysz & Robin L. Lumsdaine, 2023. "Shifts in ECB Communication: A Textual Analysis of the Press Conference," International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 473-542, June.
    5. Simionescu, Mihaela, 2022. "Econometrics of sentiments- sentometrics and machine learning: The improvement of inflation predictions in Romania using sentiment analysis," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Paul Hubert & Fabien Labondance, 2019. "Central bank tone and the dispersion of views within monetary policy committees," Working Papers hal-03403256, HAL.
    7. Baranowski, Pawel & Bennani, Hamza & Doryń, Wirginia, 2021. "Do the ECB's introductory statements help predict monetary policy? Evidence from a tone analysis," European Journal of Political Economy, Elsevier, vol. 66(C).
    8. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    9. Martin T. Bohl & Dimitrios Kanelis & Pierre L. Siklos, 2022. "How Central Bank Mandates Influence Content and Tone of Communication Over Time," CQE Working Papers 9622, Center for Quantitative Economics (CQE), University of Muenster.
    10. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
    11. Fulop, Andras & Kocsis, Zalan, 2023. "News indices on country fundamentals," Journal of Banking & Finance, Elsevier, vol. 154(C).
    12. Jonne Lehtimäki & Marianne Palmu, 2022. "Who Should You Listen to in a Crisis? Differences in Communication of Central Bank Policymakers," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 11(3), pages 33-57.
    13. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    14. repec:hal:spmain:info:hdl:2441/3mgbd73vkp9f9oje7utooe7vpg is not listed on IDEAS
    15. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    16. Baranowski, Paweł & Doryń, Wirginia & Łyziak, Tomasz & Stanisławska, Ewa, 2021. "Words and deeds in managing expectations: Empirical evidence from an inflation targeting economy," Economic Modelling, Elsevier, vol. 95(C), pages 49-67.
    17. Picault, Matthieu & Pinter, Julien & Renault, Thomas, 2022. "Media sentiment on monetary policy: Determinants and relevance for inflation expectations," Journal of International Money and Finance, Elsevier, vol. 124(C).
    18. repec:hal:spmain:info:hdl:2441/7v8fvu0bf08jcoi4epn8cutjm8 is not listed on IDEAS
    19. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    20. Dooruj Rambaccussing & Craig Menzies & Andrzej Kwiatkowski, 2022. "Look who’s Talking: Individual Committee members’ impact on inflation expectations," Dundee Discussion Papers in Economics 305, Economic Studies, University of Dundee.
    21. Bohl, Martin T. & Kanelis, Dimitrios & Siklos, Pierre L., 2023. "Central bank mandates: How differences can influence the content and tone of central bank communication," Journal of International Money and Finance, Elsevier, vol. 130(C).
    22. Niţoi, Mihai & Pochea, Maria-Miruna & Radu, Ştefan-Constantin, 2023. "Unveiling the sentiment behind central bank narratives: A novel deep learning index," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).

    More about this item

    Keywords

    Monetary Policy; Text Mining; Taylor Rule; Machine Learning; Bank of Korea;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kea:keappr:ker-20190701-35-2-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: KEA (email available below). General contact details of provider: https://edirc.repec.org/data/keaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.