IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v51y2024i3d10.1007_s11116-022-10349-x.html
   My bibliography  Save this article

Were ride-hailing fares affected by the COVID-19 pandemic? Empirical analyses in Atlanta and Boston

Author

Listed:
  • Tulio Silveira-Santos

    (Universidad Politécnica de Madrid)

  • Ana Belén Rodríguez González

    (Universidad Politécnica de Madrid)

  • Thais Rangel

    (Universidad Politécnica de Madrid
    Universidad Politécnica de Madrid)

  • Rubén Fernández Pozo

    (Universidad Politécnica de Madrid)

  • Jose Manuel Vassallo

    (Universidad Politécnica de Madrid)

  • Juan José Vinagre Díaz

    (Universidad Politécnica de Madrid)

Abstract

Ride-hailing services such as Lyft, Uber, and Cabify operate through smartphone apps and are a popular and growing mobility option in cities around the world. These companies can adjust their fares in real time using dynamic algorithms to balance the needs of drivers and riders, but it is still scarcely known how prices evolve at any given time. This research analyzes ride-hailing fares before and during the COVID-19 pandemic, focusing on applications of time series forecasting and machine learning models that may be useful for transport policy purposes. The Lyft Application Programming Interface was used to collect data on Lyft ride supply in Atlanta and Boston over 2 years (2019 and 2020). The Facebook Prophet model was used for long-term prediction to analyze the trends and global evolution of Lyft fares, while the Random Forest model was used for short-term prediction of ride-hailing fares. The results indicate that ride-hailing fares are affected during the COVID-19 pandemic, with values in the year 2020 being lower than those predicted by the models. The effects of fare peaks, uncontrollable events, and the impact of COVID-19 cases are also investigated. This study comes up with crucial policy recommendations for the ride-hailing market to better understand, regulate and integrate these services.

Suggested Citation

  • Tulio Silveira-Santos & Ana Belén Rodríguez González & Thais Rangel & Rubén Fernández Pozo & Jose Manuel Vassallo & Juan José Vinagre Díaz, 2024. "Were ride-hailing fares affected by the COVID-19 pandemic? Empirical analyses in Atlanta and Boston," Transportation, Springer, vol. 51(3), pages 791-822, June.
  • Handle: RePEc:kap:transp:v:51:y:2024:i:3:d:10.1007_s11116-022-10349-x
    DOI: 10.1007/s11116-022-10349-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-022-10349-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-022-10349-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malte Schröder & David-Maximilian Storch & Philip Marszal & Marc Timme, 2020. "Anomalous supply shortages from dynamic pricing in on-demand mobility," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Haitao Yu & Zhong-Ren Peng, 2020. "The impacts of built environment on ridesourcing demand: A neighbourhood level analysis in Austin, Texas," Urban Studies, Urban Studies Journal Limited, vol. 57(1), pages 152-175, January.
    3. Judd Cramer & Alan B. Krueger, 2016. "Disruptive Change in the Taxi Business: The Case of Uber," American Economic Review, American Economic Association, vol. 106(5), pages 177-182, May.
    4. Malte Schroder & David-Maximilian Storch & Philip Marszal & Marc Timme, 2020. "Anomalous supply shortages from dynamic pricing in on-demand mobility," Papers 2003.07736, arXiv.org.
    5. Alessandra Buja & Matteo Paganini & Silvia Cocchio & Manuela Scioni & Vincenzo Rebba & Vincenzo Baldo, 2020. "Demographic and socio-economic factors, and healthcare resource indicators associated with the rapid spread of COVID-19 in Northern Italy: An ecological study," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-13, December.
    6. Shaheen, Susan PhD & Chan, Nelson & Bansal, Apaar & Cohen, Adam, 2015. "Shared Mobility: A Sustainability & Technologies Workshop: Definitions, Industry Developments, and Early Understanding," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2f61q30s, Institute of Transportation Studies, UC Berkeley.
    7. Kuo-Ying Wang, 2014. "How Change of Public Transportation Usage Reveals Fear of the SARS Virus in a City," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    8. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Mingyang & Cheng, Lin & Li, Xuefeng & Liu, Qiyang & Yang, Jingzong, 2022. "Spatial variation of ridesplitting adoption rate in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 13-37.
    2. Wang, Sicheng & Du, Rui & Lee, Annie S., 2024. "Ridesourcing regulation and traffic speeds: A New York case," Journal of Transport Geography, Elsevier, vol. 116(C).
    3. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    4. Fielbaum, Andres & Kucharski, Rafał & Cats, Oded & Alonso-Mora, Javier, 2022. "How to split the costs and charge the travellers sharing a ride? aligning system’s optimum with users’ equilibrium," European Journal of Operational Research, Elsevier, vol. 301(3), pages 956-973.
    5. Wamsler, Julia & Natter, Martin & Algesheimer, René, 2022. "Transitioning to dynamic prices: Should pricing authority remain with the company or be delegated to the service employees instead?," Journal of Business Research, Elsevier, vol. 139(C), pages 1476-1488.
    6. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Rico Krueger & Michel Bierlaire & Prateek Bansal, 2022. "A Data Fusion Approach for Ride-sourcing Demand Estimation: A Discrete Choice Model with Sampling and Endogeneity Corrections," Papers 2212.02178, arXiv.org.
    8. Eunae Jung & Hyungun Sung, 2017. "The Influence of the Middle East Respiratory Syndrome Outbreak on Online and Offline Markets for Retail Sales," Sustainability, MDPI, vol. 9(3), pages 1-23, March.
    9. Vu, Khuong & Rohman, Ibrahim Kholilul & Bohlin, Erik, 2024. "Promoting the adoption of digital technology: Strategic policy insights from a network effects model," Telecommunications Policy, Elsevier, vol. 48(10).
    10. Berger, Thor & Chen, Chinchih & Frey, Carl Benedikt, 2018. "Drivers of disruption? Estimating the Uber effect," European Economic Review, Elsevier, vol. 110(C), pages 197-210.
    11. Kräussl, Roman & Kräussl, Zsofia & Pollet, Joshua & Rinne, Kalle, 2024. "The performance of marketplace lenders," Journal of Banking & Finance, Elsevier, vol. 162(C).
    12. Yue Guo & Fu Xin & Xiaotong Li, 2020. "The market impacts of sharing economy entrants: evidence from USA and China," Electronic Commerce Research, Springer, vol. 20(3), pages 629-649, September.
    13. Agam Gupta & Biswatosh Saha & Parthasarathi Banerjee, 2018. "Pricing decisions of car aggregation platforms in sharing economy: a developing economy perspective," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 17(5), pages 341-355, October.
    14. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    15. Yingjie Zhang & Beibei Li & Ramayya Krishnan, 2020. "Learning Individual Behavior Using Sensor Data: The Case of Global Positioning System Traces and Taxi Drivers," Information Systems Research, INFORMS, vol. 31(4), pages 1301-1321, December.
    16. Ferreira, Sara & Amorim, Marco & Lobo, António & Kern, Mira & Fanderl, Nora & Couto, António, 2022. "Travel mode preferences among German commuters over the course of COVID-19 pandemic," Transport Policy, Elsevier, vol. 126(C), pages 55-64.
    17. Lee, Junmin & Kim, Keungoui & Kim, Jiyong & Hwang, Junseok, 2022. "The relationship between shared mobility and regulation in South Korea: A system dynamics approach from the socio-technical transitions perspective," Technovation, Elsevier, vol. 109(C).
    18. Sutirtha Bagchi, 2018. "A Tale of Two Cities: An Examination of Medallion Prices in New York and Chicago," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 53(2), pages 295-319, September.
    19. Borsati, Mattia & Nocera, Silvio & Percoco, Marco, 2022. "Questioning the spatial association between the initial spread of COVID-19 and transit usage in Italy," Research in Transportation Economics, Elsevier, vol. 95(C).
    20. Virginie Boutueil & Luc Nemett & Thomas Quillerier, 2021. "Trends in Competition among Digital Platforms for Shared Mobility: Insights from a Worldwide Census and Prospects for Research," Post-Print hal-03388213, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:51:y:2024:i:3:d:10.1007_s11116-022-10349-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.