IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v50y2023i6d10.1007_s11116-022-10305-9.html
   My bibliography  Save this article

Decentralized mobility hubs in urban residential neighborhoods improve the contribution of carsharing to sustainable mobility: findings from a quasi-experimental study

Author

Listed:
  • Felix Czarnetzki

    (Hamburg University of Technology)

  • Florian Siek

    (Hamburger Hochbahn AG)

Abstract

Carsharing contributes to sustainable urban mobility by reducing private car ownership and use. Thus, policy-makers and planners need to know how cities can foster carsharing and the related benefits. Decentralized mobility hubs are an emerging approach to supporting carsharing. These hubs provide designated carsharing parking spots in the public street spaces of urban residential neighborhoods. The objective is to embed carsharing services into the immediate residential environments of urban households. Thus, the hubs are intended to make carsharing more accessible, reliable, and convenient. However, there is a lack of empirical insights into the impact of decentralized mobility hubs on carsharing. This research uses survey data on carsharing users in the inner city of Hamburg, Germany, to appreciate the actual effects of such hubs on car ownership, transport mode usage, and the perception of carsharing. Decentralized mobility hubs have existed in several high-density residential neighborhoods in Hamburg since 2017. Our findings suggest that the use of these hubs leads to a substantially more positive perception of carsharing and, as a consequence, to a greater willingness of carsharing users to forgo car ownership. Ultimately, by supporting the reduction of private car ownership, the hubs promote not only carsharing, but also the use of other sustainable modes of transportation.

Suggested Citation

  • Felix Czarnetzki & Florian Siek, 2023. "Decentralized mobility hubs in urban residential neighborhoods improve the contribution of carsharing to sustainable mobility: findings from a quasi-experimental study," Transportation, Springer, vol. 50(6), pages 2193-2225, December.
  • Handle: RePEc:kap:transp:v:50:y:2023:i:6:d:10.1007_s11116-022-10305-9
    DOI: 10.1007/s11116-022-10305-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-022-10305-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-022-10305-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prieto, Marc & Baltas, George & Stan, Valentina, 2017. "Car sharing adoption intention in urban areas: What are the key sociodemographic drivers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 218-227.
    2. de Luca, Stefano & Di Pace, Roberta, 2015. "Modelling users’ behaviour in inter-urban carsharing program: A stated preference approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 59-76.
    3. Montserrat Miramontes & Maximilian Pfertner & Hema Sharanya Rayaprolu & Martin Schreiner & Gebhard Wulfhorst, 2017. "Impacts of a multimodal mobility service on travel behavior and preferences: user insights from Munich’s first Mobility Station," Transportation, Springer, vol. 44(6), pages 1325-1342, November.
    4. Riccardo Ceccato & Marco Diana, 2021. "Substitution and complementarity patterns between traditional transport means and car sharing: a person and trip level analysis," Transportation, Springer, vol. 48(4), pages 1523-1540, August.
    5. Namazu, Michiko & Dowlatabadi, Hadi, 2018. "Vehicle ownership reduction: A comparison of one-way and two-way carsharing systems," Transport Policy, Elsevier, vol. 64(C), pages 38-50.
    6. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    7. Johanna Kopp & Regine Gerike & Kay Axhausen, 2015. "Do sharing people behave differently? An empirical evaluation of the distinctive mobility patterns of free-floating car-sharing members," Transportation, Springer, vol. 42(3), pages 449-469, May.
    8. Clewlow, Regina R., 2016. "Carsharing and sustainable travel behavior: Results from the San Francisco Bay Area," Transport Policy, Elsevier, vol. 51(C), pages 158-164.
    9. Fanchao Liao & Eric Molin & Harry Timmermans & Bert van Wee, 2020. "Carsharing: the impact of system characteristics on its potential to replace private car trips and reduce car ownership," Transportation, Springer, vol. 47(2), pages 935-970, April.
    10. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    11. Le Vine, Scott & Polak, John, 2019. "The impact of free-floating carsharing on car ownership: Early-stage findings from London," Transport Policy, Elsevier, vol. 75(C), pages 119-127.
    12. Kroesen, Maarten, 2014. "Modeling the behavioral determinants of travel behavior: An application of latent transition analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 56-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chicco, Andrea & Diana, Marco & Loose, Willi & Nehrke, Gunnar, 2022. "Comparing car ownership reduction patterns among members of different car sharing schemes operating in three German inner-city areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 370-385.
    2. Papu Carrone, Andrea & Hoening, Valerie Maria & Jensen, Anders Fjendbo & Mabit, Stefan Eriksen & Rich, Jeppe, 2020. "Understanding car sharing preferences and mode substitution patterns: A stated preference experiment," Transport Policy, Elsevier, vol. 98(C), pages 139-147.
    3. Haustein, Sonja & Kroesen, Maarten, 2022. "Shifting to more sustainable mobility styles: A latent transition approach," Journal of Transport Geography, Elsevier, vol. 103(C).
    4. Pierpaolo D’Urso & Alessio Guandalini & Francesca Romana Mallamaci & Vincenzina Vitale & Laura Bocci, 2021. "To Share or not to Share? Determinants of Sharing Mobility in Italy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(2), pages 647-692, April.
    5. Aaron Kolleck, 2021. "Does Car-Sharing Reduce Car Ownership? Empirical Evidence from Germany," Sustainability, MDPI, vol. 13(13), pages 1-17, July.
    6. Aguilera-García, Álvaro & Gomez, Juan & Antoniou, Constantinos & Vassallo, José Manuel, 2022. "Behavioral factors impacting adoption and frequency of use of carsharing: A tale of two European cities," Transport Policy, Elsevier, vol. 123(C), pages 55-72.
    7. Rüdiger Hahn & Felix Ostertag & Adrian Lehr & Marion Büttgen & Sabine Benoit, 2020. "“I like it, but I don't use it”: Impact of carsharing business models on usage intentions in the sharing economy," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1404-1418, March.
    8. Lucia Rotaris, 2021. "Carsharing Services in Italy: Trends and Innovations," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    9. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    10. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    11. Diana, Marco & Chicco, Andrea, 2022. "The spatial reconfiguration of parking demand due to car sharing diffusion: a simulated scenario for the cities of Milan and Turin (Italy)," Journal of Transport Geography, Elsevier, vol. 98(C).
    12. Weibo Li & Maria Kamargianni, 2020. "Steering short-term demand for car-sharing: a mode choice and policy impact analysis by trip distance," Transportation, Springer, vol. 47(5), pages 2233-2265, October.
    13. Fu, Xingxing & van Lierop, Dea & Ettema, Dick, 2024. "Is multimodality advantageous? Assessing the relationship between multimodality and perceived transport adequacy and accessibility in different travel contexts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    14. Riccardo Ceccato & Marco Diana, 2021. "Substitution and complementarity patterns between traditional transport means and car sharing: a person and trip level analysis," Transportation, Springer, vol. 48(4), pages 1523-1540, August.
    15. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    16. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    17. Ana María Arbeláez Vélez & Andrius Plepys, 2021. "Car Sharing as a Strategy to Address GHG Emissions in the Transport System: Evaluation of Effects of Car Sharing in Amsterdam," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    18. Curtale, Riccardo & Liao, Feixiong & van der Waerden, Peter, 2021. "User acceptance of electric car-sharing services: The case of the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 266-282.
    19. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    20. Pan, Alexandra Q. & Martin, Elliot W. & Shaheen, Susan A., 2022. "Is access enough? A spatial and demographic analysis of one-way carsharing policies and practice," Transport Policy, Elsevier, vol. 127(C), pages 103-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:50:y:2023:i:6:d:10.1007_s11116-022-10305-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.