IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i5d10.1007_s11116-021-10212-5.html
   My bibliography  Save this article

Double parking in New York city: a comparison between commercial vehicles and passenger vehicles

Author

Listed:
  • Woojung Kim

    (Rensselaer Polytechnic Institute)

  • Xiaokun (Cara) Wang

    (Rensselaer Polytechnic Institute)

Abstract

Commercial vehicles are more likely to park close to their destinations than passenger vehicles even though sometimes parking violations are inevitable for their freight or service activities. Although clear distinctions between commercial and passenger vehicles lead to different illegal parking behaviors, little is known about the difference in double parking behaviors between the two types. To better utilize limited curb spaces, a better understanding of differences and similarities is required so that corresponding policies can be established accordingly. Therefore, this research aims to quantify the difference in double parking behavior between commercial and passenger vehicles using count models from two different perspectives: (a) an individual vehicle level count model to investigate vehicle attributes influencing the number of double parking violations per vehicle and (b) a ZIP Code level count model to investigate economic and built environment factors affecting double parking behaviors. The results showed that double parking is a ‘one-time event’ for a passenger vehicle and a ‘recurring event’ for a commercial vehicle. With respect to economic factors, different types of establishments had different levels of impact on double parking for commercial and passenger vehicles in an area. This research discusses how parking policies and strategies can be established based on the similarities and differences between commercial and passenger vehicles’ parking violation behavior.

Suggested Citation

  • Woojung Kim & Xiaokun (Cara) Wang, 2022. "Double parking in New York city: a comparison between commercial vehicles and passenger vehicles," Transportation, Springer, vol. 49(5), pages 1315-1337, October.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:5:d:10.1007_s11116-021-10212-5
    DOI: 10.1007/s11116-021-10212-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10212-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10212-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Simon P. & de Palma, Andre, 2004. "The economics of pricing parking," Journal of Urban Economics, Elsevier, vol. 55(1), pages 1-20, January.
    2. Chaniotakis, Emmanouil & Pel, Adam J., 2015. "Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 228-239.
    3. Schmid, Joshua & Wang, Xiaokun (Cara) & Conway, Alison, 2018. "Commercial vehicle parking duration in New York City and its implications for planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 580-590.
    4. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    5. Hunt, J. D. & Teply, S., 1993. "A nested logit model of parking location choice," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 253-265, August.
    6. Guang Tian & Reid Ewing & Rachel Weinberger & Kevin Shively & Preston Stinger & Shima Hamidi, 2017. "Trip and parking generation at transit-oriented developments: a case study of Redmond TOD, Seattle region," Transportation, Springer, vol. 44(5), pages 1235-1254, September.
    7. Figliozzi, Miguel Andres, 2007. "Analysis of the efficiency of urban commercial vehicle tours: Data collection, methodology, and policy implications," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 1014-1032, November.
    8. Romain Petiot, 2004. "Parking enforcement and travel demand management," Post-Print hal-02422664, HAL.
    9. Petiot, Romain, 2004. "Parking enforcement and travel demand management," Transport Policy, Elsevier, vol. 11(4), pages 399-411, October.
    10. Ottosson, Dadi Baldur & Chen, Cynthia & Wang, Tingting & Lin, Haiyun, 2013. "The sensitivity of on-street parking demand in response to price changes: A case study in Seattle, WA," Transport Policy, Elsevier, vol. 25(C), pages 222-232.
    11. Amer, Ahmed & Chow, Joseph Y.J., 2017. "A downtown on-street parking model with urban truck delivery behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 51-67.
    12. Chen, Quanquan & Conway, Alison & Cheng, Jialei, 2017. "Parking for residential delivery in New York City: Regulations and behavior," Transport Policy, Elsevier, vol. 54(C), pages 53-60.
    13. Nourinejad, Mehdi & Roorda, Matthew J., 2017. "Impact of hourly parking pricing on travel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 28-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaya, Johanna & Encarnación, Trilce & Delgado-Lindeman, Maira, 2023. "Understanding Delivery Drivers’ Parking Preferences in Urban Freight Operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geva, Sharon & Fulman, Nir & Ben-Elia, Eran, 2022. "Getting the prices right: Drivers' cruising choices in a serious parking game," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 54-75.
    2. Wang, Hao & Li, Ruimin & Wang, Xiaokun (Cara) & Shang, Pan, 2020. "Effect of on-street parking pricing policies on parking characteristics: A case study of Nanning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 65-78.
    3. Caicedo, Felix & Diaz, Alejandra, 2013. "Case analysis of simultaneous concessions of parking meters and underground parking facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 358-378.
    4. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    5. Fang Zong & Meng Zeng & Ping Yu, 2024. "A parking pricing scheme considering parking dynamics," Transportation, Springer, vol. 51(4), pages 1349-1371, August.
    6. Rodier, Caroline & Shaheen, Susan A. & Blake, Tagan, 2010. "Smart Parking Pilot on the Coaster Commuter Rail Line in San Diego, California," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt06s723rw, Institute of Transportation Studies, UC Berkeley.
    7. Lehner, Stephan & Peer, Stefanie, 2019. "The price elasticity of parking: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 177-191.
    8. Najmi, Ali & Bostanara, Maryam & Gu, Ziyuan & Rashidi, Taha H., 2021. "On-street parking management and pricing policies: An evaluation from a system enhancement perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 128-151.
    9. Parmar, Janak & Saiyed, Gulnazbanu & Dave, Sanjaykumar, 2023. "Analysis of taste heterogeneity in commuters’ travel decisions using joint parking– and mode–choice model: A case from urban India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    10. Cats, Oded & Zhang, Chen & Nissan, Albania, 2016. "Survey methodology for measuring parking occupancy: Impacts of an on-street parking pricing scheme in an urban center," Transport Policy, Elsevier, vol. 47(C), pages 55-63.
    11. Nevland, Erik A. & Gingerich, Kevin & Park, Peter Y., 2020. "A data-driven systematic approach for identifying and classifying long-haul truck parking locations," Transport Policy, Elsevier, vol. 96(C), pages 48-59.
    12. Chaniotakis, Emmanouil & Pel, Adam J., 2015. "Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 228-239.
    13. Janak Parmar & Gulnazbanu Saiyed & Sanjaykumar Dave, 2021. "Analysis of taste heterogeneity in commuters travel decisions using joint parking and mode choice model: A case from urban India," Papers 2109.01045, arXiv.org, revised Oct 2023.
    14. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2011. "A multilayer model to simulate cruising for parking in urban areas," Transport Policy, Elsevier, vol. 18(5), pages 735-744, September.
    15. Zhang, Xinying & Pitera, Kelly & Wang, Yuanqing, 2024. "Exploring parking choices under the coexistence of autonomous and conventional vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    16. Kim, Haena & Goodchild, Anne & Boyle, Linda Ng, 2021. "Empirical analysis of commercial vehicle dwell times around freight-attracting urban buildings in downtown Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 320-338.
    17. Francis Ostermeijer & Hans RA Koster & Leonardo Nunes & Jos van Ommeren, 2021. "Citywide parking policy and traffic: Evidence from Amsterdam," Tinbergen Institute Discussion Papers 21-015/VIII, Tinbergen Institute.
    18. Mo, Baichuan & Kong, Hui & Wang, Hao & Wang, Xiaokun (Cara) & Li, Ruimin, 2021. "Impact of pricing policy change on on-street parking demand and user satisfaction: A case study in Nanning, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 445-469.
    19. Ostermeijer, Francis & Koster, Hans & Nunes, Leonardo & van Ommeren, Jos, 2022. "Citywide parking policy and traffic: Evidence from Amsterdam," Journal of Urban Economics, Elsevier, vol. 128(C).
    20. Nourinejad, Mehdi & Gandomi, Amir & Roorda, Matthew J., 2020. "Illegal parking and optimal enforcement policies with search friction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:5:d:10.1007_s11116-021-10212-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.