IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i5d10.1007_s11116-019-10017-7.html
   My bibliography  Save this article

Demand management of congested public transport systems: a conceptual framework and application using smart card data

Author

Listed:
  • Anne Halvorsen

    (Massachusetts Institute of Technology
    Metropolitan Transportation Authority, New York Transit)

  • Haris N. Koutsopoulos

    (Northeastern University)

  • Zhenliang Ma

    (Monash University)

  • Jinhua Zhao

    (Massachusetts Institute of Technology)

Abstract

Transportation demand management, long used to reduce car traffic, is receiving attention among public transport operators as a means to reduce congestion in crowded public transportation systems. Though far less studied, a more structured approach to public transport demand management (PTDM) can help agencies make informed decisions on the combination of PTDM and infrastructure investments that best manage crowding. Automated fare collection data, readily available in many public transport agencies, provide a unique platform to advance systematic approaches for the design and evaluation of PTDM strategies. The paper discusses the main steps for developing PTDM programs: (a) problem identification and formulation of program goals; (b) program design; (c) evaluation; and (d) monitoring. The problem identification phase examines bottlenecks in the system based on a spatiotemporal passenger flow analysis. The design phase identifies the main design parameters based on a categorization of potential interventions along spatial, temporal, modal, and targeted user group parameters. Evaluation takes place at the system, group, and individual levels, taking advantage of the detailed information obtained from smart card transaction data. The monitoring phase addresses the long-term sustainability of the intervention and informs potential changes to improve its effectiveness. A case study of a pre-peak fare discount policy in Hong Kong’s MTR network is used to illustrate the application of the various steps with focus on evaluation and analysis of the impacts from a behavioral point of view. Smart card data from before and after the implementation of the scheme from a panel of users was used to study policy-induced behavior shifts. A cluster analysis inferred customer groups relevant to the analysis based on their usage patterns. Users who shifted their behavior were identified based on a change point analysis and a logit model was estimated to identify the main factors that contribute to this change: the amount of time a user needed to shift his/her departure time, departure time variability, fare savings, and price sensitivity. User heterogeneity suggests that future incentives may be improved if they target specific groups.

Suggested Citation

  • Anne Halvorsen & Haris N. Koutsopoulos & Zhenliang Ma & Jinhua Zhao, 2020. "Demand management of congested public transport systems: a conceptual framework and application using smart card data," Transportation, Springer, vol. 47(5), pages 2337-2365, October.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:5:d:10.1007_s11116-019-10017-7
    DOI: 10.1007/s11116-019-10017-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-019-10017-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-019-10017-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai, 1994. "Least Squares Estimation Of A Shift In Linear Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 453-472, September.
    2. Bamberg, Sebastian & Fujii, Satoshi & Friman, Margareta & Gärling, Tommy, 2011. "Behaviour theory and soft transport policy measures," Transport Policy, Elsevier, vol. 18(1), pages 228-235, January.
    3. Wie, Byung-Wook & Tobin, Roger L., 1998. "Dynamic congestion pricing models for general traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 313-327, June.
    4. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    5. Jiechao Zhang & Xuedong Yan & Meiwu An & Li Sun, 2017. "The Impact of Beijing Subway’s New Fare Policy on Riders’ Attitude, Travel Pattern and Demand," Sustainability, MDPI, vol. 9(5), pages 1-21, April.
    6. Zhang, Zheng & Fujii, Hidemichi & Managi, Shunsuke, 2014. "How does Commuting Behavior Change Due to Incentives? An Empirical Study of the Beijing Subway System," MPRA Paper 54691, University Library of Munich, Germany.
    7. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    8. Maruyama, Takuya & Sumalee, Agachai, 2007. "Efficiency and equity comparison of cordon- and area-based road pricing schemes using a trip-chain equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 655-671, August.
    9. Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs & Daziano, Ricardo A., 2017. "Estimation of crowding discomfort in public transport: Results from Santiago de Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 311-326.
    10. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    11. Prud'homme, Rémy & Koning, Martin & Lenormand, Luc & Fehr, Anne, 2012. "Public transport congestion costs: The case of the Paris subway," Transport Policy, Elsevier, vol. 21(C), pages 101-109.
    12. Gärling, Tommy & Eek, Daniel & Loukopoulos, Peter & Fujii, Satoshi & Johansson-Stenman, Olof & Kitamura, Ryuichi & Pendyala, Ram & Vilhelmson, Bertil, 2002. "A conceptual analysis of the impact of travel demand management on private car use," Transport Policy, Elsevier, vol. 9(1), pages 59-70, January.
    13. Wang, Zi-jia & Li, Xiao-hong & Chen, Feng, 2015. "Impact evaluation of a mass transit fare change on demand and revenue utilizing smart card data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 213-224.
    14. Batarce, Marco & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2016. "Valuing crowding in public transport: Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 358-378.
    15. Hamdouch, Younes & Florian, Michael & Hearn, Donald W. & Lawphongpanich, Siriphong, 2007. "Congestion pricing for multi-modal transportation systems," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 275-291, March.
    16. Li, Zheng & Hensher, David A., 2011. "Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal," Transport Policy, Elsevier, vol. 18(6), pages 880-887, November.
    17. Yang, Hai & Tang, Yili, 2018. "Managing rail transit peak-hour congestion with a fare-reward scheme," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 122-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Qing-Long & Mahajan, Vishal & Lyu, Cheng & Antoniou, Constantinos, 2024. "Analyzing the impact of fare-free public transport policies on crowding patterns at stations using crowdsensing data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    2. Prabhakar, Archana & Grison, Elise & Morgagni., Simone, 2024. "Smartphone mobility assistants. A lever to guide route choice preferences in mass transit?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Ma, Zhenliang & Koutsopoulos, Haris N. & Liu, Tianyou & Basu, Abhishek Arunasis, 2020. "Behavioral response to promotion-based public transport demand management: Longitudinal analysis and implications for optimal promotion design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 356-372.
    4. Jaroslav Mašek & Vladimíra Štefancová & Jaroslav Mazanec & Petra Juránková, 2023. "The Classification of Application Users Supporting and Facilitating Travel Mobility Using Two-Step Cluster Analysis," Mathematics, MDPI, vol. 11(9), pages 1-16, May.
    5. Chen, Ruoyu & Zhou, Jiangping, 2022. "Fare adjustment’s impacts on travel patterns and farebox revenue: An empirical study based on longitudinal smartcard data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 111-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    2. Yap, Menno & Cats, Oded, 2021. "Taking the path less travelled: Valuation of denied boarding in crowded public transport systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 1-13.
    3. Márquez, Luis & Alfonso A, Julieth V. & Poveda, Juan C., 2019. "In-vehicle crowding: Integrating tangible attributes, attitudes, and perceptions in a choice context between BRT and metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 452-465.
    4. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    5. Chen, Xin & Jiang, Yu & Bláfoss Ingvardson, Jesper & Luo, Xia & Anker Nielsen, Otto, 2023. "I can board, but I’d rather wait: Active boarding delay choice behaviour analysis using smart card data in metro systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    6. Varghese, Varun & Moniruzzaman, Md. & Chikaraishi, Makoto, 2023. "Environmental sustainability or equity in welfare? Analysing passenger flows of a mass rapid transit system with heterogeneous demand," Research in Transportation Economics, Elsevier, vol. 97(C).
    7. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Junya Kumagai & Mihoko Wakamatsu & Shunsuke Managi, 2021. "Do commuters adapt to in-vehicle crowding on trains?," Transportation, Springer, vol. 48(5), pages 2357-2399, October.
    9. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos & Cats, Oded, 2019. "The underlying effect of public transport reliability on users’ satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 83-93.
    10. Rossetti, Tomás & Daziano, Ricardo A., 2024. "Crowding multipliers on shared transportation in New York City: The effects of COVID-19 and implications for a sustainable future," Transport Policy, Elsevier, vol. 145(C), pages 224-236.
    11. Aghabayk, Kayvan & Esmailpour, Javad & Shiwakoti, Nirajan, 2021. "Effects of COVID-19 on rail passengers’ crowding perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 186-202.
    12. Jenelius, Erik, 2018. "Public transport experienced service reliability: Integrating travel time and travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 275-291.
    13. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.
    14. Arbex, Renato & Cunha, Claudio B., 2020. "Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. Iglesias, Vicente & Raveau, Sebastián, 2024. "Effect of the COVID-19 pandemic on crowding aversion in public transport and transport mode choice: The case of Santiago, Chile," Transport Policy, Elsevier, vol. 146(C), pages 167-174.
    16. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    17. Basnak, Paul & Giesen, Ricardo & Muñoz, Juan Carlos, 2022. "Estimation of crowding factors for public transport during the COVID-19 pandemic in Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 140-156.
    18. Lin, Joanne Yuh-Jye & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak & Chen, Cynthia, 2023. "The equity of public transport crowding exposure," Journal of Transport Geography, Elsevier, vol. 110(C).
    19. Patrik Nosil & Zachariah Gompert & Daniel J. Funk, 2024. "Divergent dynamics of sexual and habitat isolation at the transition between stick insect populations and species," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:5:d:10.1007_s11116-019-10017-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.