IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v44y2017i5d10.1007_s11116-016-9701-y.html
   My bibliography  Save this article

Accessibility measures for robustness of the transport system

Author

Listed:
  • Feixiong Liao

    (Eindhoven University of Technology)

  • Bert van Wee

    (Delft University of Technology)

Abstract

Accessibility is a key concept in transport and land use policies, and infrastructure-based measures are one important category of accessibility measures. Recently, there has been a significant increase in the attention paid in both academic literature and policy documents to the robustness of the transport system. However, there is not a mature body of literature on the infrastructure-based accessibility measures expressing this concept. This paper proposes a family of accessibility measures to express the robustness of the transport system. These have in common that they express the number of travel options between a given origin and destination, or to conduct activities. The family of measures is conceptualized by using the multi-state supernetwork approach. With respect to the travel options, we discuss (1) the overlap of travel routes, and (2) the choices of travel modes (e.g. car versus train; multimodal). With respect to the activities, we discuss (1) the choice of OD pairs as opposed to activity-travel patterns, and (2) fixed versus flexible activity locations and fixed versus flexible order of activities. We illustrate the travel options and robustness in a multi-modal transport system between the city centers of the Hague-Rotterdam-Dordrecht corridor (The Netherlands).

Suggested Citation

  • Feixiong Liao & Bert van Wee, 2017. "Accessibility measures for robustness of the transport system," Transportation, Springer, vol. 44(5), pages 1213-1233, September.
  • Handle: RePEc:kap:transp:v:44:y:2017:i:5:d:10.1007_s11116-016-9701-y
    DOI: 10.1007/s11116-016-9701-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-016-9701-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-016-9701-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Terence C. & Small, Kenneth A., 2003. "The Value of Time and Reliability: Measurement from a Value Pricing Experiment," University of California Transportation Center, Working Papers qt47s4z7z5, University of California Transportation Center.
    2. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    3. Nikhil Sikka & Paul Hanley, 2013. "What do commuters think travel time reliability is worth? Calculating economic value of reducing the frequency and extent of unexpected delays," Transportation, Springer, vol. 40(5), pages 903-919, September.
    4. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    5. Farag, Sendy & Schwanen, Tim & Dijst, Martin & Faber, Jan, 2007. "Shopping online and/or in-store? A structural equation model of the relationships between e-shopping and in-store shopping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(2), pages 125-141, February.
    6. de Jong, Gerard & Daly, Andrew & Pieters, Marits & van der Hoorn, Toon, 2007. "The logsum as an evaluation measure: Review of the literature and new results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 874-889, November.
    7. Janić, Milan, 2015. "Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 77-92.
    8. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    9. Börjesson, Maria & Eliasson, Jonas, 2011. "On the use of "average delay" as a measure of train reliability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 171-184, March.
    10. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    11. Lam, Terence C. & Small, Kenneth A., 0. "The value of time and reliability: measurement from a value pricing experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 231-251, April.
    12. Koopmans, Carl & Groot, Wim & Warffemius, Pim & Annema, Jan Anne & Hoogendoorn-Lanser, Sascha, 2013. "Measuring generalised transport costs as an indicator of accessibility changes over time," Transport Policy, Elsevier, vol. 29(C), pages 154-159.
    13. Rietveld, P. & Bruinsma, F. R. & van Vuuren, D. J., 2001. "Coping with unreliability in public transport chains: A case study for Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 539-559, July.
    14. Chorus, Caspar G. & de Jong, Gerard C., 2011. "Modeling experienced accessibility for utility-maximizers and regret-minimizers," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1155-1162.
    15. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    16. Laird, James & Geurs, Karst & Nash, Chris, 2009. "Option and non-use values and rail project appraisal," Transport Policy, Elsevier, vol. 16(4), pages 173-182, August.
    17. Patricia L. Mokhtarian, 2002. "Telecommunications and Travel: The Case for Complementarity," Journal of Industrial Ecology, Yale University, vol. 6(2), pages 43-57, April.
    18. Wee, Bert van & Geurs, Karst & Chorus, Caspar, 2013. "Information, communication, travel behavior and accessibility," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(3), pages 1-16.
    19. Lyons, Glenn & Urry, John, 2005. "Travel time use in the information age," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 257-276.
    20. Yin-Yen Tseng & Piet Rietveld & Erik Verhoef, 2012. "Unreliable trains and induced rescheduling: implications for cost-benefit analysis," Transportation, Springer, vol. 39(2), pages 387-407, March.
    21. D’Lima, Minette & Medda, Francesca, 2015. "A new measure of resilience: An application to the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 35-46.
    22. van Wee, Bert & Bohte, Wendy & Molin, Eric & Arentze, Theo & Liao, Feixiong, 2014. "Policies for synchronization in the transport–land-use system," Transport Policy, Elsevier, vol. 31(C), pages 1-9.
    23. Shlomo Bekhor & Moshe Ben-Akiva & M. Ramming, 2006. "Evaluation of choice set generation algorithms for route choice models," Annals of Operations Research, Springer, vol. 144(1), pages 235-247, April.
    24. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    25. Guo, Zhan & Wilson, Nigel H.M., 2011. "Assessing the cost of transfer inconvenience in public transport systems: A case study of the London Underground," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 91-104, February.
    26. Hayashi, Y. & Morisugi, H., 2000. "International comparison of background concept and methodology of transportation project appraisal," Transport Policy, Elsevier, vol. 7(1), pages 73-88, January.
    27. Guihaire, Valérie & Hao, Jin-Kao, 2008. "Transit network design and scheduling: A global review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1251-1273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Heerden, Quintin & Karsten, Carike & Holloway, Jenny & Petzer, Engela & Burger, Paul & Mans, Gerbrand, 2022. "Accessibility, affordability, and equity in long-term spatial planning: Perspectives from a developing country," Transport Policy, Elsevier, vol. 120(C), pages 104-119.
    2. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    3. van Wee, Bert & van Cranenburgh, Sander & Maat, Kees, 2019. "Substitutability as a spatial concept to evaluate travel alternatives," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    4. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    5. Sen, Suman & Charles, Michael B. & Harrison, Jennifer L., 2022. "Usage-based road pricing and potential equity issues: A study of commuters in South East Queensland, Australia," Transport Policy, Elsevier, vol. 118(C), pages 33-43.
    6. Li, Qing & Liao, Feixiong, 2020. "Incorporating vehicle self-relocations and traveler activity chains in a bi-level model of optimal deployment of shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 151-175.
    7. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    8. Shin Takada & So Morikawa & Rika Idei & Hironori Kato, 2021. "Impacts of improvements in rural roads on household income through the enhancement of market accessibility in rural areas of Cambodia," Transportation, Springer, vol. 48(5), pages 2857-2881, October.
    9. Sarlas, Georgios & Páez, Antonio & Axhausen, Kay W., 2020. "Betweenness-accessibility: Estimating impacts of accessibility on networks," Journal of Transport Geography, Elsevier, vol. 84(C).
    10. Kain Glensor, 2018. "Development of an Index of Transport-User Vulnerability, and its Application in Enschede, The Netherlands," Sustainability, MDPI, vol. 10(7), pages 1-12, July.
    11. Fu, Xiao & Zuo, Yufan & Zhang, Shanqi & Liu, Zhiyuan, 2022. "Measuring joint space-time accessibility in transit network under travel time uncertainty," Transport Policy, Elsevier, vol. 116(C), pages 355-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Wee, Bert & Bohte, Wendy & Molin, Eric & Arentze, Theo & Liao, Feixiong, 2014. "Policies for synchronization in the transport–land-use system," Transport Policy, Elsevier, vol. 31(C), pages 1-9.
    2. Chorus, Caspar G. & Timmermans, Harry J.P., 2009. "Measuring user benefits of changes in the transport system when traveler awareness is limited," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 536-547, June.
    3. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    4. Peer, Stefanie & Knockaert, Jasper & Verhoef, Erik T., 2016. "Train commuters’ scheduling preferences: Evidence from a large-scale peak avoidance experiment," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 314-333.
    5. van Loon, Ruben & Rietveld, Piet & Brons, Martijn, 2011. "Travel-time reliability impacts on railway passenger demand: a revealed preference analysis," Journal of Transport Geography, Elsevier, vol. 19(4), pages 917-925.
    6. Chakrabarti, Sandip & Giuliano, Genevieve, 2015. "Does service reliability determine transit patronage? Insights from the Los Angeles Metro bus system," Transport Policy, Elsevier, vol. 42(C), pages 12-20.
    7. Chorus, Caspar G. & Arentze, Theo A. & Molin, Eric J.E. & Timmermans, Harry J.P. & Van Wee, Bert, 2006. "The value of travel information: Decision strategy-specific conceptualizations and numerical examples," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 504-519, July.
    8. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.
    9. Börjesson, Maria & Eliasson, Jonas, 2011. "On the use of "average delay" as a measure of train reliability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 171-184, March.
    10. van Wee, Bert, 2016. "Accessible accessibility research challenges," Journal of Transport Geography, Elsevier, vol. 51(C), pages 9-16.
    11. Yin-Yen Tseng, 2004. "A meta-analysis of travel time reliability," ERSA conference papers ersa04p415, European Regional Science Association.
    12. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    13. Börjesson, Maria & Eliasson, Jonas & Franklin, Joel, 2012. "Valuations of travel time variability in scheduling versus mean-variance models," Working papers in Transport Economics 2012:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    14. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    15. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    16. Hongcheng Gan & Yang Bai, 2014. "The effect of travel time variability on route choice decision: a generalized linear mixed model based analysis," Transportation, Springer, vol. 41(2), pages 339-350, March.
    17. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    18. Wang, Qian & Sundberg, Marcus & Karlström, Anders, 2013. "Scheduling choices under rank dependent utility maximization," Working papers in Transport Economics 2013:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    19. Andreas Økland & Nils O. E. Olsson, 2021. "Punctuality development and delay explanation factors on Norwegian railways in the period 2005–2014," Public Transport, Springer, vol. 13(1), pages 127-161, March.
    20. Fosgerau, Mogens & Fukuda, Daisuke, 2010. "Valuing travel time variability: Characteristics of the travel time distribution on an urban road," MPRA Paper 24330, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:44:y:2017:i:5:d:10.1007_s11116-016-9701-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.