IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v61y2023i4d10.1007_s11156-023-01194-9.html
   My bibliography  Save this article

A new PIN model with application of the change-point detection method

Author

Listed:
  • Chu-Lan Michael Kao

    (National Yang Ming Chiao-Tung University)

  • Emily Lin

    (St. John’s University)

Abstract

The existing PIN models impose a restriction on the number of possible intensity pairs. However, our investigation shows that the number of empirical intensity pairs is significantly more than the one these models assume, and this number changes daily. Therefore, we propose a new model which, by using the change-point detection technique, can adjust this number according to the data. The model also considers autocorrelation, which is lacking in the existing PIN models. In addition, we show that the proposed model can examine how public information transfers to individual stock price and quantify transfer delay.

Suggested Citation

  • Chu-Lan Michael Kao & Emily Lin, 2023. "A new PIN model with application of the change-point detection method," Review of Quantitative Finance and Accounting, Springer, vol. 61(4), pages 1513-1528, November.
  • Handle: RePEc:kap:rqfnac:v:61:y:2023:i:4:d:10.1007_s11156-023-01194-9
    DOI: 10.1007/s11156-023-01194-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11156-023-01194-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11156-023-01194-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Chen, 2022. "Delayed informed trades and opinion divergence: Evidence from earnings releases," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4556-4574, October.
    2. Chao Du & Chu-Lan Michael Kao & S. C. Kou, 2016. "Stepwise Signal Extraction via Marginal Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 314-330, March.
    3. Easley, David & Hvidkjaer, Soeren & O’Hara, Maureen, 2010. "Factoring Information into Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 293-309, April.
    4. Lai, Sandy & Ng, Lilian & Zhang, Bohui, 2014. "Does PIN affect equity prices around the world?," Journal of Financial Economics, Elsevier, vol. 114(1), pages 178-195.
    5. Yan, Yuxing & Zhang, Shaojun, 2012. "An improved estimation method and empirical properties of the probability of informed trading," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 454-467.
    6. Guanming He & Helen Mengbing Ren & Richard Taffler, 2022. "Do enhanced derivative disclosures work? An informational perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 24-60, January.
    7. William Lin, Hsiou-Wei & Ke, Wen-Chyan, 2011. "A computing bias in estimating the probability of informed trading," Journal of Financial Markets, Elsevier, vol. 14(4), pages 625-640, November.
    8. Anthony Tay & Christopher Ting & Yiu Kuen Tse & Mitch Warachka, 2009. "Using High-Frequency Transaction Data to Estimate the Probability of Informed Trading," Journal of Financial Econometrics, Oxford University Press, vol. 7(3), pages 288-311, Summer.
    9. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    10. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    11. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    12. Quan Gan & Wang Chun Wei & David Johnstone, 2015. "A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1805-1821, November.
    13. Kou, S. C, 2008. "Stochastic Networks in Nanoscale Biophysics," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 961-975.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ersan, Oguz & Alıcı, Aslı, 2016. "An unbiased computation methodology for estimating the probability of informed trading (PIN)," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 43(C), pages 74-94.
    2. Cosmin Octavian Cepoi & Victor Dragotă & Ruxandra Trifan & Andreea Iordache, 2023. "Probability of informed trading during the COVID-19 pandemic: the case of the Romanian stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    3. Agudelo, Diego A. & Giraldo, Santiago & Villarraga, Edwin, 2015. "Does PIN measure information? Informed trading effects on returns and liquidity in six emerging markets," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 149-161.
    4. Griffin, Jim & Oberoi, Jaideep & Oduro, Samuel D., 2021. "Estimating the probability of informed trading: A Bayesian approach," Journal of Banking & Finance, Elsevier, vol. 125(C).
    5. Petchey, James & Wee, Marvin & Yang, Joey, 2016. "Pinning down an effective measure for probability of informed trading," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 456-475.
    6. Thomas Pöppe & Michael Aitken & Dirk Schiereck & Ingo Wiegand, 2016. "A PIN per day shows what news convey: the intraday probability of informed trading," Review of Quantitative Finance and Accounting, Springer, vol. 47(4), pages 1187-1220, November.
    7. Lof, Matthijs & Bommel, Jos van, 2018. "Asymmetric information and the distribution of trading volume," Research Discussion Papers 1, Bank of Finland.
    8. repec:zbw:bofrdp:001 is not listed on IDEAS
    9. Ke, Wen-Chyan & Chen, Hueiling & Lin, Hsiou-Wei William, 2019. "A note of techniques that mitigate floating-point errors in PIN estimation," Finance Research Letters, Elsevier, vol. 31(C).
    10. Schreder, Max, 2018. "Idiosyncratic information and the cost of equity capital: A meta-analytic review of the literature," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 142-172.
    11. David Abad & M. Fuensanta Cutillas†Gomariz & Juan Pedro Sánchez†Ballesta & José Yagüe, 2018. "Does IFRS Mandatory Adoption Affect Information Asymmetry in the Stock Market?," Australian Accounting Review, CPA Australia, vol. 28(1), pages 61-78, March.
    12. repec:zbw:bofrdp:2018_001 is not listed on IDEAS
    13. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    14. Kropiński, Paweł & Bosek, Bartłomiej & Pudo, Mikołaj, 2024. "State ownership, probability of informed trading, and profitability potential: Evidence from the Warsaw Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    15. Kim, Sangwan & Lim, Steve C., 2017. "Earnings comparability and informed trading," Finance Research Letters, Elsevier, vol. 20(C), pages 130-136.
    16. Pham, Son Duy & Nguyen, Thao Thac Thanh & Do, Hung Xuan, 2022. "Effect of futures trading on the liquidity of underlying stocks: Evidence from Vietnam," Pacific-Basin Finance Journal, Elsevier, vol. 73(C).
    17. Jackson, David, 2013. "Estimating PIN for firms with high levels of trading," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 116-120.
    18. Kitamura, Yoshihiro, 2016. "The probability of informed trading measured with price impact, price reversal, and volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 77-90.
    19. Bhurjee, Keerat & Saragur Ramanna, Vishwanatha, 2024. "Preopening auctions and price discovery in initial public offerings," Journal of Banking & Finance, Elsevier, vol. 165(C).
    20. Emily Lin & Chu-Lan Michael Kao & Natasha Sonia Adityarini, 2021. "Data-driven tree structure for PIN models," Review of Quantitative Finance and Accounting, Springer, vol. 57(2), pages 411-427, August.
    21. Quan Gan & Wang Chun Wei & David Johnstone, 2015. "A faster estimation method for the probability of informed trading using hierarchical agglomerative clustering," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1805-1821, November.
    22. Sankaraguruswamy, Srinivasan & Shen, Jianfeng & Yamada, Takeshi, 2013. "The relationship between the frequency of news release and the information asymmetry: The role of uninformed trading," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4134-4143.

    More about this item

    Keywords

    Probability of informed trading (PIN); Change-point detection technique; Information transfer delay;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:61:y:2023:i:4:d:10.1007_s11156-023-01194-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.