IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v17y2014i1p113-124.html
   My bibliography  Save this article

Path-dependent game options: a lookback case

Author

Listed:
  • Peidong Guo
  • Qihong Chen
  • Xicai Guo
  • Yue Fang

Abstract

The game option, which is also known as Israel option, is an American option with callable features. The option holder can exercise the option at any time up to maturity. This article studies the pricing behaviors of the path-dependent game option where the payoff of the option depends on the maximum or minimum asset price over the life of the option (i.e., the game option with the lookback feature). We obtain the explicit pricing formula for the perpetual case and provide the integral expression of pricing formula under the finite horizon case. In addition, we derive optimal exercise strategies and continuation regions of options in both floating and fixed strike cases. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Peidong Guo & Qihong Chen & Xicai Guo & Yue Fang, 2014. "Path-dependent game options: a lookback case," Review of Derivatives Research, Springer, vol. 17(1), pages 113-124, April.
  • Handle: RePEc:kap:revdev:v:17:y:2014:i:1:p:113-124
    DOI: 10.1007/s11147-013-9092-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11147-013-9092-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-013-9092-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuri Kifer, 2000. "Game options," Finance and Stochastics, Springer, vol. 4(4), pages 443-463.
    2. Baurdoux, Erik J. & Kyprianou, Andreas E., 2004. "Further calculations for Israeli options," LSE Research Online Documents on Economics 23916, London School of Economics and Political Science, LSE Library.
    3. Andreas Kyprianou, 2004. "Some calculations for Israeli options," Finance and Stochastics, Springer, vol. 8(1), pages 73-86, January.
    4. Christoph Kühn & Andreas E. Kyprianou, 2007. "Callable Puts As Composite Exotic Options," Mathematical Finance, Wiley Blackwell, vol. 17(4), pages 487-502, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Peidong & Zhang, Jizhou & Wang, Qian, 2020. "Path-dependent game options with Asian features," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsuan-Ku Liu, 2013. "The pricing formula for cancellable European options," Papers 1304.5962, arXiv.org, revised Sep 2014.
    2. Guo, Peidong & Zhang, Jizhou & Wang, Qian, 2020. "Path-dependent game options with Asian features," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Benjamin Gottesman Berdah, 2020. "Recombining tree approximations for Game Options in Local Volatility models," Papers 2007.02323, arXiv.org, revised Jul 2020.
    4. Yuri Kifer, 2012. "Dynkin Games and Israeli Options," Papers 1209.1791, arXiv.org.
    5. Gapeev Pavel V. & Kühn Christoph, 2005. "Perpetual convertible bonds in jump-diffusion models," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 15-31, January.
    6. Yan Dolinsky & Ariel Neufeld, 2015. "Super-replication in Fully Incomplete Markets," Papers 1508.05233, arXiv.org, revised Sep 2016.
    7. Ivan Guo & Marek Rutkowski, 2017. "Arbitrage-free pricing of multi-person game claims in discrete time," Finance and Stochastics, Springer, vol. 21(1), pages 111-155, January.
    8. Hertrich Markus, 2016. "The Costs of Implementing a Unilateral One-Sided Exchange Rate Target Zone," Review of Economics, De Gruyter, vol. 67(1), pages 91-120, May.
    9. Egami, Masahiko & Leung, Tim & Yamazaki, Kazutoshi, 2013. "Default swap games driven by spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 347-384.
    10. Luis H. R. Alvarez E., 2006. "Minimum Guaranteed Payments and Costly Cancellation Rights: A Stopping Game Perspective," Discussion Papers 12, Aboa Centre for Economics.
    11. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game put options," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    12. Boyarchenko, Svetlana & Levendorskiĭ, Sergei, 2014. "Preemption games under Lévy uncertainty," Games and Economic Behavior, Elsevier, vol. 88(C), pages 354-380.
    13. Erik Ekström, 2006. "Properties of game options," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(2), pages 221-238, May.
    14. Luis H. R. Alvarez E., 2006. "A Class of Solvable Stopping Games," Discussion Papers 11, Aboa Centre for Economics.
    15. Huang, Haishi, 2010. "Convertible Bonds: Risks and Optimal Strategies," Bonn Econ Discussion Papers 07/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).
    16. De Angelis, Tiziano & Gensbittel, Fabien & Villeneuve, Stéphane, 2017. "A Dynkin game on assets with incomplete information on the return," TSE Working Papers 17-815, Toulouse School of Economics (TSE).
    17. Yagi, Kyoko & Sawaki, Katsushige, 2010. "The pricing and optimal strategies of callable warrants," European Journal of Operational Research, Elsevier, vol. 206(1), pages 123-130, October.
    18. Hsuan-Ku Liu, 2021. "Perpetual callable American volatility options in a mean-reverting volatility model," Papers 2104.01127, arXiv.org.
    19. Baurdoux, Erik J. & Kyprianou, Andreas E., 2004. "Further calculations for Israeli options," LSE Research Online Documents on Economics 23916, London School of Economics and Political Science, LSE Library.
    20. Lerche Hans Rudolf & Stich Dominik, 2013. "A harmonic function approach to Nash-equilibria of Kifer-type stopping games," Statistics & Risk Modeling, De Gruyter, vol. 30(2), pages 169-180, June.

    More about this item

    Keywords

    American options; Lookback game options; Callable feature; Path dependent; G13;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:17:y:2014:i:1:p:113-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.