IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v137y2020ics0960077920302587.html
   My bibliography  Save this article

Discounted perpetual game put options

Author

Listed:
  • Zaevski, Tsvetelin S.

Abstract

The aim of this study is to explore the behavior of perpetual game put options, also known as cancellable puts. Their main characteristic is the opportunity of the buyer and the seller to exercise prematurely. If the seller decides to terminate the option, he obliges to pay a penalty amount above the normal option fee. We include also a discount factor that provides an advantage for earlier option exercising. We obtain the optimal moments for both participants to end the option promptly. This allows us to turn the option pricing problem to a first exit problem. We base our examination on financial instruments with random maturities. These instruments permit one of the partakers to maximize his expected future profit.

Suggested Citation

  • Zaevski, Tsvetelin S., 2020. "Discounted perpetual game put options," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920302587
    DOI: 10.1016/j.chaos.2020.109858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anis Matoussi & Lambert Piozin & Dylan Possamai, 2012. "Second-order BSDEs with general reflection and game options under uncertainty," Papers 1212.0476, arXiv.org, revised Jan 2014.
    2. Zaevski, Tsvetelin S., 2020. "Discounted perpetual game call options," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Andreas Kyprianou, 2004. "Some calculations for Israeli options," Finance and Stochastics, Springer, vol. 8(1), pages 73-86, January.
    4. Jan Kallsen & Christoph Kühn, 2004. "Pricing derivatives of American and game type in incomplete markets," Finance and Stochastics, Springer, vol. 8(2), pages 261-284, May.
    5. Lu, Xiaoping & Putri, Endah R.M., 2020. "A semi-analytic valuation of American options under a two-state regime-switching economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    6. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    7. Atsuo Suzuki & Katsushige Sawaki, 2007. "The Pricing Of Perpetual Game Put Options And Optimal Boundaries," World Scientific Book Chapters, in: Tadashi Dohi & Shunji Osaki & Katsushige Sawaki (ed.), Recent Advances In Stochastic Operations Research, chapter 12, pages 175-187, World Scientific Publishing Co. Pte. Ltd..
    8. Baurdoux, Erik J. & Kyprianou, Andreas E., 2004. "Further calculations for Israeli options," LSE Research Online Documents on Economics 23916, London School of Economics and Political Science, LSE Library.
    9. Пигнастый, Олег & Koжевников, Георгий, 2019. "Распределенная Динамическая Pde-Модель Программного Управления Загрузкой Технологического Оборудования Производственной Линии [Distributed dynamic PDE-model of a program control by utilization of t," MPRA Paper 93278, University Library of Munich, Germany, revised 02 Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Peidong & Zhang, Jizhou & Wang, Qian, 2020. "Path-dependent game options with Asian features," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Tsvetelin S. Zaevski, 2023. "American strangle options with arbitrary strikes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 880-903, July.
    3. Deng, Guohe, 2020. "Pricing perpetual American floating strike lookback option under multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Zaevski, Tsvetelin S., 2022. "Pricing discounted American capped options," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Tsvetelin S. Zaevski, 2022. "Pricing cancellable American put options on the finite time horizon," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1284-1303, July.
    6. Yan, Dong & Lin, Sha & Hu, Zhihao & Yang, Ben-Zhang, 2022. "Pricing American options with stochastic volatility and small nonlinear price impact: A PDE approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Peidong & Zhang, Jizhou & Wang, Qian, 2020. "Path-dependent game options with Asian features," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Hsuan-Ku Liu, 2013. "The pricing formula for cancellable European options," Papers 1304.5962, arXiv.org, revised Sep 2014.
    3. Tsvetelin S. Zaevski, 2022. "Pricing cancellable American put options on the finite time horizon," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1284-1303, July.
    4. Yuri Kifer, 2012. "Dynkin Games and Israeli Options," Papers 1209.1791, arXiv.org.
    5. Tianyang Nie & Edward Kim & Marek Rutkowski, 2018. "Arbitrage-Free Pricing of Game Options in Nonlinear Markets," Papers 1807.05448, arXiv.org.
    6. Erhan Bayraktar & Song Yao, 2015. "On the Robust Dynkin Game," Papers 1506.09184, arXiv.org, revised Sep 2016.
    7. Benjamin Gottesman Berdah, 2020. "Recombining tree approximations for Game Options in Local Volatility models," Papers 2007.02323, arXiv.org, revised Jul 2020.
    8. Ivan Guo & Marek Rutkowski, 2014. "Arbitrage Pricing of Multi-person Game Contingent Claims," Papers 1405.2718, arXiv.org.
    9. Yan, Dong & Lin, Sha & Hu, Zhihao & Yang, Ben-Zhang, 2022. "Pricing American options with stochastic volatility and small nonlinear price impact: A PDE approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    10. Yuri Kifer, 2006. "Error estimates for binomial approximations of game options," Papers math/0607123, arXiv.org.
    11. Gapeev Pavel V. & Kühn Christoph, 2005. "Perpetual convertible bonds in jump-diffusion models," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 15-31, January.
    12. Ivan Guo & Marek Rutkowski, 2017. "Arbitrage-free pricing of multi-person game claims in discrete time," Finance and Stochastics, Springer, vol. 21(1), pages 111-155, January.
    13. Said Hamadene & Jianfeng Zhang, 2008. "The Continuous Time Nonzero-sum Dynkin Game Problem and Application in Game Options," Papers 0810.5698, arXiv.org.
    14. Huang, Haishi, 2010. "Convertible Bonds: Risks and Optimal Strategies," Bonn Econ Discussion Papers 07/2010, University of Bonn, Bonn Graduate School of Economics (BGSE).
    15. Peidong Guo & Qihong Chen & Xicai Guo & Yue Fang, 2014. "Path-dependent game options: a lookback case," Review of Derivatives Research, Springer, vol. 17(1), pages 113-124, April.
    16. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    17. Baurdoux, Erik J. & Kyprianou, Andreas E., 2004. "Further calculations for Israeli options," LSE Research Online Documents on Economics 23916, London School of Economics and Political Science, LSE Library.
    18. Yan Dolinsky, 2020. "On Shortfall Risk Minimization for Game Options," Papers 2002.01528, arXiv.org.
    19. Gapeev, Pavel V. & Li, Libo, 2022. "Perpetual American standard and lookback options with event risk and asymmetric information," LSE Research Online Documents on Economics 114940, London School of Economics and Political Science, LSE Library.
    20. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.

    More about this item

    Keywords

    Game options; Cancellable puts; American style instruments; Optimal regions;
    All these keywords.

    JEL classification:

    • C57 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Econometrics of Games and Auctions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920302587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.