IDEAS home Printed from https://ideas.repec.org/a/kap/pubcho/v176y2018i3d10.1007_s11127-018-0560-2.html
   My bibliography  Save this article

The Shapley value analyzed under the Felsenthal and Machover bargaining model

Author

Listed:
  • Giulia Bernardi

    (Politecnico di Milano)

  • Josep Freixas

    (Escola Politècnica Superior d’Enginyeria de Manresa, Universitat Politècnica de Catalunya)

Abstract

In 1996, Felsenthal and Machover proposed a bargaining procedure for a valuable payoff in cooperative and simple games. They proved that the value underlying their bargaining scheme was the Shapley value by showing that it verifies the axioms that Shapley proposed for characterizing his value. They remarked that a direct proof of the result involves rather formidable combinatorial difficulties, but that it has some independent interest. In this paper, we prove such a combinatorial result and obtain a formula for the Shapley value that has a great potential to be extended to more general classes of games.

Suggested Citation

  • Giulia Bernardi & Josep Freixas, 2018. "The Shapley value analyzed under the Felsenthal and Machover bargaining model," Public Choice, Springer, vol. 176(3), pages 557-565, September.
  • Handle: RePEc:kap:pubcho:v:176:y:2018:i:3:d:10.1007_s11127-018-0560-2
    DOI: 10.1007/s11127-018-0560-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11127-018-0560-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11127-018-0560-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casajus, André, 2014. "The Shapley value without efficiency and additivity," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 1-4.
    2. Martin Shubik, 1962. "Incentives, Decentralized Control, the Assignment of Joint Costs and Internal Pricing," Management Science, INFORMS, vol. 8(3), pages 325-343, April.
    3. Winter, Eyal, 2002. "The shapley value," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 53, pages 2025-2054, Elsevier.
    4. Felsenthal, Dan S & Machover, Moshe, 1996. "Alternative Forms of the Shapley Value and the Shapley-Shubik Index," Public Choice, Springer, vol. 87(3-4), pages 315-318, June.
    5. Monderer, Dov & Samet, Dov, 2002. "Variations on the shapley value," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 54, pages 2055-2076, Elsevier.
    6. Shapley, L. S. & Shubik, Martin, 1954. "A Method for Evaluating the Distribution of Power in a Committee System," American Political Science Review, Cambridge University Press, vol. 48(3), pages 787-792, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Zongbao & Wu, Xianguo & Chen, Hongyu & Qin, Yawei & Zhang, Limao & Skibniewski, Miroslaw J., 2022. "An energy performance contracting parameter optimization method based on the response surface method: A case study of a metro in China," Energy, Elsevier, vol. 248(C).
    2. Kurz, Sascha & Napel, Stefan, 2018. "The roll call interpretation of the Shapley value," Economics Letters, Elsevier, vol. 173(C), pages 108-112.
    3. André Casajus & Frank Huettner, 2019. "The Coleman–Shapley index: being decisive within the coalition of the interested," Public Choice, Springer, vol. 181(3), pages 275-289, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Brink & Frank Steffen, 2012. "Axiomatizations of a positional power score and measure for hierarchies," Public Choice, Springer, vol. 151(3), pages 757-787, June.
    2. Barış Çiftçi & Peter Borm & Herbert Hamers, 2010. "Population monotonic path schemes for simple games," Theory and Decision, Springer, vol. 69(2), pages 205-218, August.
    3. Zaremba Leszek & Zaremba Cezary S. & Suchenek Marek, 2017. "Modification of Shapley Value and its Implementation in Decision Making," Foundations of Management, Sciendo, vol. 9(1), pages 257-272, October.
    4. Barr, Jason & Passarelli, Francesco, 2009. "Who has the power in the EU?," Mathematical Social Sciences, Elsevier, vol. 57(3), pages 339-366, May.
    5. Giulia Bernardi, 2018. "A New Axiomatization of the Banzhaf Index for Games with Abstention," Group Decision and Negotiation, Springer, vol. 27(1), pages 165-177, February.
    6. Bergantiños, Gustavo & Valencia-Toledo, Alfredo & Vidal-Puga, Juan, 2016. "Consistency in PERT problems," MPRA Paper 68973, University Library of Munich, Germany.
    7. Friedman, Jane & Parker, Cameron, 2018. "The conditional Shapley–Shubik measure for ternary voting games," Games and Economic Behavior, Elsevier, vol. 108(C), pages 379-390.
    8. Ciftci, B.B., 2009. "A cooperative approach to sequencing and connection problems," Other publications TiSEM b0f08a17-4734-4d57-ad66-f, Tilburg University, School of Economics and Management.
    9. Xingwei Hu, 2020. "A theory of dichotomous valuation with applications to variable selection," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1075-1099, November.
    10. Shan, Erfang & Cui, Zeguang & Lyu, Wenrong, 2023. "Gain–loss and new axiomatizations of the Shapley value," Economics Letters, Elsevier, vol. 228(C).
    11. Xingwei Hu, 2018. "A Theory of Dichotomous Valuation with Applications to Variable Selection," Papers 1808.00131, arXiv.org, revised Mar 2020.
    12. Martin Shubik, 2011. "The Present and Future of Game Theory," Levine's Working Paper Archive 786969000000000173, David K. Levine.
    13. Fabien Lange & László Kóczy, 2013. "Power indices expressed in terms of minimal winning coalitions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 281-292, July.
    14. Justin Yifu Lin, 2007. "Development and Transition : Idea, Strategy, and Viability," Development Economics Working Papers 22709, East Asian Bureau of Economic Research.
    15. Takaaki Abe & Satoshi Nakada, 2023. "Core stability of the Shapley value for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 523-543, May.
    16. Kurz, Sascha & Maaser, Nicola & Napel, Stefan, 2018. "Fair representation and a linear Shapley rule," Games and Economic Behavior, Elsevier, vol. 108(C), pages 152-161.
    17. Kar, Anirban & Mitra, Manipushpak & Mutuswami, Suresh, 2009. "On the coincidence of the prenucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 57(1), pages 16-25, January.
    18. Gustavo Bergantiños & Juan Vidal-Puga, 2005. "The Consistent Coalitional Value," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 832-851, November.
    19. Kurz, Sascha & Napel, Stefan, 2018. "The roll call interpretation of the Shapley value," Economics Letters, Elsevier, vol. 173(C), pages 108-112.
    20. Di Giannatale, Paolo & Passarelli, Francesco, 2013. "Voting chances instead of voting weights," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 164-173.

    More about this item

    Keywords

    Cooperative games; Simple games; Shapley value; Bargaining procedures; Roll-calls;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:pubcho:v:176:y:2018:i:3:d:10.1007_s11127-018-0560-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.