IDEAS home Printed from https://ideas.repec.org/a/kap/poprpr/v34y2015i4p593-613.html
   My bibliography  Save this article

Subnational Population Projections by Age: An Evaluation of Combined Forecast Techniques

Author

Listed:
  • Mario Reinhold
  • Stephan Thomsen

Abstract

Population projections commonly suffer from a decreasing accuracy with a higher degree of disaggregation. We suggest combining the cohort-component model and an averaged projection technique to improve precision of forecasts for small areas. Calculating ex-post population projections, we evaluate the precision and bias of the proposed method by contrasting error patterns of commonly used techniques using official population data from 46 districts of a German state for the years 1980–2013. In comparison to the individual methods considered, the combined approach results in the highest accuracy and lowest bias both for the total population and for age groups. The proposed method is also more robust regarding past growth. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Mario Reinhold & Stephan Thomsen, 2015. "Subnational Population Projections by Age: An Evaluation of Combined Forecast Techniques," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 34(4), pages 593-613, August.
  • Handle: RePEc:kap:poprpr:v:34:y:2015:i:4:p:593-613
    DOI: 10.1007/s11113-015-9362-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11113-015-9362-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11113-015-9362-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    2. Joop Beer & Ingeborg Deerenberg, 2007. "An Explanatory Model for Projecting Regional Fertility Differences in the Netherlands," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(5), pages 511-528, December.
    3. Paul Goodwin, 2009. "New Evidence on the Value of Combining Forecasts," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 12, pages 33-35, Winter.
    4. Smith, Stanley K. & Sincich, Terry, 1992. "Evaluating the forecast accuracy and bias of alternative population projections for states," International Journal of Forecasting, Elsevier, vol. 8(3), pages 495-508, November.
    5. Stanley Smith & Jeff Tayman, 2003. "An evaluation of population projections by age," Demography, Springer;Population Association of America (PAA), vol. 40(4), pages 741-757, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
    2. Tom Wilson, 2022. "Preparing local area population forecasts using a bi-regional cohort-component model without the need for local migration data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 46(32), pages 919-956.
    3. Philip Rees & Tom Wilson, 2023. "Accuracy of Local Authority Population Forecasts Produced by a New Minimal Data Model: A Case Study of England," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(6), pages 1-30, December.
    4. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    2. Stefan Rayer & Stanley Smith, 2014. "Population Projections by Age for Florida and its Counties: Assessing Accuracy and the Impact of Adjustments," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 33(5), pages 747-770, October.
    3. Tom Wilson, 2022. "Preparing local area population forecasts using a bi-regional cohort-component model without the need for local migration data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 46(32), pages 919-956.
    4. Zvi Schwartz & Timothy Webb & Jean-Pierre I van der Rest & Larissa Koupriouchina, 2021. "Enhancing the accuracy of revenue management system forecasts: The impact of machine and human learning on the effectiveness of hotel occupancy forecast combinations across multiple forecasting horizo," Tourism Economics, , vol. 27(2), pages 273-291, March.
    5. Stefan Rayer & Stanley Smith & Jeff Tayman, 2009. "Empirical Prediction Intervals for County Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(6), pages 773-793, December.
    6. Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2012. "Examination of property forecasting models - accuracy and its improvement through combination forecasting," ERES eres2012_082, European Real Estate Society (ERES).
    7. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    8. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    9. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    10. Herman O. Stekler, 2008. "Evaluating Consensus Forecasts," Working Papers 2008-007, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    11. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    12. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    13. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    14. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Technology.
    15. Fifić, Mario & Gigerenzer, Gerd, 2014. "Are two interviewers better than one?," Journal of Business Research, Elsevier, vol. 67(8), pages 1771-1779.
    16. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    17. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    18. Carter, Lawrence R., 1998. "Combining probabilistic and subjective assessments of error to provide realistic appraisals of demographic forecast uncertainty: Alho's approach," International Journal of Forecasting, Elsevier, vol. 14(4), pages 523-526, December.
    19. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    20. repec:cup:judgdm:v:15:y:2020:i:5:p:863-880 is not listed on IDEAS
    21. Arie Preminger & Uri Ben-zion & David Wettstein, 2007. "The extended switching regression model: allowing for multiple latent state variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(7), pages 457-473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:34:y:2015:i:4:p:593-613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.