IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v39y2012i1p1-6.html
   My bibliography  Save this article

Simple and Complex Models

Author

Listed:
  • Richard E Klosterman

    (University of Akron, Ohio)

Abstract

No abstract is available for this item.

Suggested Citation

  • Richard E Klosterman, 2012. "Simple and Complex Models," Environment and Planning B, , vol. 39(1), pages 1-6, February.
  • Handle: RePEc:sae:envirb:v:39:y:2012:i:1:p:1-6
    DOI: 10.1068/b38155
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b38155
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b38155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yokuma, J. Thomas & Armstrong, J. Scott, 1995. "Beyond accuracy: Comparison of criteria used to select forecasting methods," International Journal of Forecasting, Elsevier, vol. 11(4), pages 591-597, December.
    2. Smith, Stanley K. & Sincich, Terry, 1992. "Evaluating the forecast accuracy and bias of alternative population projections for states," International Journal of Forecasting, Elsevier, vol. 8(3), pages 495-508, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Rayer, 2007. "Population forecast accuracy: does the choice of summary measure of error matter?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(2), pages 163-184, April.
    2. Smith, Stanley K., 1997. "Further thoughts on simplicity and complexity in population projection models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 557-565, December.
    3. Che-Jung Chang & Liping Yu & Peng Jin, 2016. "A mega-trend-diffusion grey forecasting model for short-term manufacturing demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1439-1445, December.
    4. Carter, Lawrence R., 1998. "Combining probabilistic and subjective assessments of error to provide realistic appraisals of demographic forecast uncertainty: Alho's approach," International Journal of Forecasting, Elsevier, vol. 14(4), pages 523-526, December.
    5. Chang, Che-Jung & Li, Der-Chiang & Huang, Yi-Hsiang & Chen, Chien-Chih, 2015. "A novel gray forecasting model based on the box plot for small manufacturing data sets," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 400-408.
    6. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    7. Fullerton, Thomas Jr. & Laaksonen, Mika M. & West, Carol T., 2001. "Regional multi-family housing start forecast accuracy," International Journal of Forecasting, Elsevier, vol. 17(2), pages 171-180.
    8. Khim-Sen Liew & Kian-Ping Lim & Chee-Keong Choong, 2003. "On The Forecastability Of Asean-5 Stock Markets Returns Using Time Series Models," Finance 0307012, University Library of Munich, Germany.
    9. Robert Fildes & Paul Goodwin, 2007. "Against Your Better Judgment? How Organizations Can Improve Their Use of Management Judgment in Forecasting," Interfaces, INFORMS, vol. 37(6), pages 570-576, December.
    10. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    11. Adya, Monica & Collopy, Fred & Armstrong, J. Scott & Kennedy, Miles, 2001. "Automatic identification of time series features for rule-based forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 143-157.
    12. JS Armstrong, 2004. "Forecasting for Environmental Decision Making," General Economics and Teaching 0412023, University Library of Munich, Germany.
    13. JS Armstrong & Fred Collopy, 2004. "Integration of Statistical Methods and Judgment for Time Series," General Economics and Teaching 0412024, University Library of Munich, Germany.
    14. Shuyun Ren & Hau-Ling Chan & Pratibha Ram, 2017. "A Comparative Study on Fashion Demand Forecasting Models with Multiple Sources of Uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 335-355, October.
    15. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    16. Mario Reinhold & Stephan Thomsen, 2015. "Subnational Population Projections by Age: An Evaluation of Combined Forecast Techniques," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 34(4), pages 593-613, August.
    17. repec:aaa:journl:v:3:y:1999:i:1:p:87-100 is not listed on IDEAS
    18. Stefan Rayer & Stanley Smith & Jeff Tayman, 2009. "Empirical Prediction Intervals for County Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(6), pages 773-793, December.
    19. Guangqing Chi, 2009. "Can knowledge improve population forecasts at subcounty levels?," Demography, Springer;Population Association of America (PAA), vol. 46(2), pages 405-427, May.
    20. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael & Önkal, Dilek, 2019. "Judgmental adjustments through supply integration for strategic partnerships in food chains," Omega, Elsevier, vol. 87(C), pages 20-33.
    21. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:39:y:2012:i:1:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.