IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v23y2023i4d10.1007_s11067-023-09602-2.html
   My bibliography  Save this article

Examining Commercial Center Accessibility Using a Modified 2SFCA method in Realistic Networks in Nanjing, China

Author

Listed:
  • Jianhua Ni

    (Anhui University
    Anhui University)

  • Jie Chen

    (Datong University)

  • Zheng Fu

    (Nanjing University)

  • Changbai Xi

    (Nanjing University)

  • Jiechen Wang

    (Nanjing University
    Nanjing University
    Nanjing University)

Abstract

The accessibility of commercial centers (CCs) is a topic of great concern to consumers and planners. However, current research is mostly limited to the accessibility of a single traffic mode or rough road network, which makes it difficult to reflect on the real travel situation of residents. Based on the two-step floating catchment area (2SFCA) method framework, we propose an extended method for analyzing the accessibility of CCs in different transportation modes, making it suitable for commercial geography research. The Baidu Map API is used to provide more accurate, convenient, and realistic data for reliable estimates to pinpoint underserved populations. The results can be summarized as follows: First, the multimode R2SFCA method proposed fills the knowledge gap to the accessibility of a single traffic mode or or rough road network. Second, there exist significant differences in the spatial distribution of access to CCs for consumers in different transportation modes. The range of public transit along metro or bus routes shows a finger-like spatial distribution, while car traffic extends along external urban traffic routes and is time-sensitive because of traffic conditions. Third, changes in the average accessibility scores for all travel modes showed similar patterns with increasing threshold time. These accessibility measures help identify underserved areas and enable the development of policy recommendations for the optimal allocation of commercial facilities and resources.

Suggested Citation

  • Jianhua Ni & Jie Chen & Zheng Fu & Changbai Xi & Jiechen Wang, 2023. "Examining Commercial Center Accessibility Using a Modified 2SFCA method in Realistic Networks in Nanjing, China," Networks and Spatial Economics, Springer, vol. 23(4), pages 1025-1045, December.
  • Handle: RePEc:kap:netspa:v:23:y:2023:i:4:d:10.1007_s11067-023-09602-2
    DOI: 10.1007/s11067-023-09602-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-023-09602-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-023-09602-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    2. Lawrence Frank & Mark Bradley & Sarah Kavage & James Chapman & T. Lawton, 2008. "Urban form, travel time, and cost relationships with tour complexity and mode choice," Transportation, Springer, vol. 35(1), pages 37-54, January.
    3. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    4. Borja Moya-Gómez & María Henar Salas-Olmedo & Juan Carlos García-Palomares & Javier Gutiérrez, 2018. "Dynamic Accessibility using Big Data: The Role of the Changing Conditions of Network Congestion and Destination Attractiveness," Networks and Spatial Economics, Springer, vol. 18(2), pages 273-290, June.
    5. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    6. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    7. B J Linneker & N A Spence, 1992. "Accessibility Measures Compared in an Analysis of the Impact of the M25 London Orbital Motorway on Britain," Environment and Planning A, , vol. 24(8), pages 1137-1154, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianlu Qian & Zheng Fu & Jie Chen & Shujie Qin & Changbai Xi & Jiechen Wang, 2023. "Evaluating multiscale and multimodal transport inequalities in Chinese cities with massive open-source path data," Journal of Geographical Systems, Springer, vol. 25(2), pages 237-264, April.
    2. Mansour, Shawky & Alahmadi, Mohammed & Abulibdeh, Ammar, 2022. "Spatial assessment of audience accessibility to historical monuments and museums in Qatar during the 2022 FIFA World Cup," Transport Policy, Elsevier, vol. 127(C), pages 116-129.
    3. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    4. Chen, Shaopei & Claramunt, Christophe & Ray, Cyril, 2014. "A spatio-temporal modelling approach for the study of the connectivity and accessibility of the Guangzhou metropolitan network," Journal of Transport Geography, Elsevier, vol. 36(C), pages 12-23.
    5. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    6. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    7. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    8. Levy, Nadav & Golani, Chen & Ben-Elia, Eran, 2019. "An exploratory study of spatial patterns of cycling in Tel Aviv using passively generated bike-sharing data," Journal of Transport Geography, Elsevier, vol. 76(C), pages 325-334.
    9. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    10. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "A Latent Segmentation Multinomial Logit Approach to Examine Bicycle Sharing System Users' Destination Preferences," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319270, Transportation Research Forum.
    11. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    12. Wang, Xize & Lindsey, Greg & Schoner, Jessica E. & Harrison, Andrew, 2016. "Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations," SocArXiv stav4, Center for Open Science.
    13. Chrysa Vizmpa & George Botzoris & Panagiotis Lemonakis & Athanasios Galanis, 2023. "Micromobility in Urban Trail Paths: Expanding and Strengthening the Planning of 15-Minute Cities," Land, MDPI, vol. 12(12), pages 1-22, December.
    14. Ruqin Yang & Yaolin Liu & Yanfang Liu & Hui Liu & Wenxia Gan, 2019. "Comprehensive Public Transport Service Accessibility Index—A New Approach Based on Degree Centrality and Gravity Model," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    15. Virginie Boutueil & Luc Nemett & Thomas Quillerier, 2021. "Trends in Competition among Digital Platforms for Shared Mobility: Insights from a Worldwide Census and Prospects for Research," Post-Print hal-03388213, HAL.
    16. Mohammed Elhenawy & Hesham A. Rakha & Youssef Bichiou & Mahmoud Masoud & Sebastien Glaser & Jack Pinnow & Ahmed Stohy, 2021. "A Feasible Solution for Rebalancing Large-Scale Bike Sharing Systems," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    17. Shahram Heydari & Garyfallos Konstantinoudis & Abdul Wahid Behsoodi, 2021. "Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.
    18. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    19. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    20. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:23:y:2023:i:4:d:10.1007_s11067-023-09602-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.