IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v21y2021i4d10.1007_s11067-021-09545-6.html
   My bibliography  Save this article

Adaptive Park-and-ride Choice on Time-dependent Stochastic Multimodal Transportation Network

Author

Listed:
  • Pramesh Kumar

    (University of Minnesota - Twin Cities)

  • Alireza Khani

    (University of Minnesota - Twin Cities)

Abstract

In transportation networks with stochastic and dynamic travel times, park-and-ride decisions are often made adaptively considering the realized state of traffic. That is, users continue driving towards their destination if the congestion level is low, but may consider taking transit when the congestion level is high. This adaptive behavior determines whether and where people park-and-ride. We propose to use a Markov decision process to model the problem of commuters’ adaptive park-and-ride choice behavior in a transportation network with time-dependent and stochastic link travel times. The model evaluates a routing policy by minimizing the expected cost of travel that leverages the online information about the travel time on outgoing links in making park-and-ride decisions. We provide a case study of park-and-ride facilities located on freeway I-394 in Twin Cities, Minnesota. The results show a significant improvement in the travel time by the use of park-and-ride during congested conditions. It also reveals the time of departure, the state of the traffic, and the location from where park-and-ride becomes an attractive option to the commuters. Finally, we show the benefit of using online routing in comparison to an offline routing algorithm.

Suggested Citation

  • Pramesh Kumar & Alireza Khani, 2021. "Adaptive Park-and-ride Choice on Time-dependent Stochastic Multimodal Transportation Network," Networks and Spatial Economics, Springer, vol. 21(4), pages 771-800, December.
  • Handle: RePEc:kap:netspa:v:21:y:2021:i:4:d:10.1007_s11067-021-09545-6
    DOI: 10.1007/s11067-021-09545-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-021-09545-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-021-09545-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    2. Alireza Khani & Mark Hickman & Hyunsoo Noh, 2015. "Trip-Based Path Algorithms Using the Transit Network Hierarchy," Networks and Spatial Economics, Springer, vol. 15(3), pages 635-653, September.
    3. Hao Pang & Alireza Khani, 2018. "Modeling park-and-ride location choice of heterogeneous commuters," Transportation, Springer, vol. 45(1), pages 71-87, January.
    4. Khani, Alireza & Boyles, Stephen D., 2015. "An exact algorithm for the mean–standard deviation shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 252-266.
    5. Rambha, Tarun & Boyles, Stephen D. & Unnikrishnan, Avinash & Stone, Peter, 2018. "Marginal cost pricing for system optimal traffic assignment with recourse under supply-side uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 104-121.
    6. Avinash Unnikrishnan & Steven Waller, 2009. "User Equilibrium with Recourse," Networks and Spatial Economics, Springer, vol. 9(4), pages 575-593, December.
    7. Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
    8. Claude Chriqui & Pierre Robillard, 1975. "Common Bus Lines," Transportation Science, INFORMS, vol. 9(2), pages 115-121, May.
    9. Liu, Yang & Blandin, Sebastien & Samaranayake, Samitha, 2019. "Stochastic on-time arrival problem in transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 122-138.
    10. Nguyen, S. & Pallottino, S., 1988. "Equilibrium traffic assignment for large scale transit networks," European Journal of Operational Research, Elsevier, vol. 37(2), pages 176-186, November.
    11. Stephen Boyles & S. Waller, 2011. "Optimal Information Location for Adaptive Routing," Networks and Spatial Economics, Springer, vol. 11(2), pages 233-254, June.
    12. Alexander Webb & Pramesh Kumar & Alireza Khani, 2020. "Estimation of passenger waiting time using automatically collected transit data," Public Transport, Springer, vol. 12(2), pages 299-311, June.
    13. Gao, Song & Chabini, Ismail, 2006. "Optimal routing policy problems in stochastic time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 93-122, February.
    14. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    15. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    16. Amir Eiger & Pitu B. Mirchandani & Hossein Soroush, 1985. "Path Preferences and Optimal Paths in Probabilistic Networks," Transportation Science, INFORMS, vol. 19(1), pages 75-84, February.
    17. Harilaos N. Psaraftis & John N. Tsitsiklis, 1993. "Dynamic Shortest Paths in Acyclic Networks with Markovian Arc Costs," Operations Research, INFORMS, vol. 41(1), pages 91-101, February.
    18. John S. Croucher, 1978. "A note on the stochastic shortest‐route problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(4), pages 729-732, December.
    19. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panyu Tang & Mahdi Aghaabbasi & Mujahid Ali & Amin Jan & Abdeliazim Mustafa Mohamed & Abdullah Mohamed, 2022. "How Sustainable Is People’s Travel to Reach Public Transit Stations to Go to Work? A Machine Learning Approach to Reveal Complex Relationships," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    2. Kumar, Pramesh & Khani, Alireza, 2022. "Planning of integrated mobility-on-demand and urban transit networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 499-521.
    3. Milan Dedik & Pavol Mesko & Lumir Peceny, 2023. "The Implementation Of The Park And Ride Logistics Technology To Improve The Quality Of Passenger Transport In The Tatra Region In Slovakia," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 23, pages 333-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.
    2. Redmond, Michael & Campbell, Ann Melissa & Ehmke, Jan Fabian, 2022. "Reliability in public transit networks considering backup itineraries," European Journal of Operational Research, Elsevier, vol. 300(3), pages 852-864.
    3. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    4. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    5. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    6. Mohammad Nurul Hassan & Taha Hossein Rashidi & Neema Nassir, 2021. "Consideration of different travel strategies and choice set sizes in transit path choice modelling," Transportation, Springer, vol. 48(2), pages 723-746, April.
    7. Cats, Oded & Koutsopoulos, Haris N. & Burghout, Wilco & Toledo, Tomer, 2013. "Effect of real-time transit information on dynamic path choice of passengers," Working papers in Transport Economics 2013:28, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    8. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    9. Gardner, Clara Brimnes & Nielsen, Sara Dorthea & Eltved, Morten & Rasmussen, Thomas Kjær & Nielsen, Otto Anker & Nielsen, Bo Friis, 2021. "Calculating conditional passenger travel time distributions in mixed schedule- and frequency-based public transport networks using Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 1-17.
    10. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    11. Levering, Nikki & Boon, Marko & Mandjes, Michel & Núñez-Queija, Rudesindo, 2022. "A framework for efficient dynamic routing under stochastically varying conditions," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 97-124.
    12. Liu, Yang & Blandin, Sebastien & Samaranayake, Samitha, 2019. "Stochastic on-time arrival problem in transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 122-138.
    13. Khani, Alireza, 2019. "An online shortest path algorithm for reliable routing in schedule-based transit networks considering transfer failure probability," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 549-564.
    14. Chai, Huajun, 2019. "Dynamic Traffic Routing and Adaptive Signal Control in a Connected Vehicles Environment," Institute of Transportation Studies, Working Paper Series qt9ng3z8vn, Institute of Transportation Studies, UC Davis.
    15. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    16. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    17. Codina, Esteve & Rosell, Francisca, 2017. "A heuristic method for a congested capacitated transit assignment model with strategies," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 293-320.
    18. Roberto Cominetti & José Correa, 2001. "Common-Lines and Passenger Assignment in Congested Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 250-267, August.
    19. Belgacem Bouzaïene-Ayari & Michel Gendreau & Sang Nguyen, 2001. "Modeling Bus Stops in Transit Networks: A Survey and New Formulations," Transportation Science, INFORMS, vol. 35(3), pages 304-321, August.
    20. Stephen Boyles & S. Waller, 2011. "Optimal Information Location for Adaptive Routing," Networks and Spatial Economics, Springer, vol. 11(2), pages 233-254, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:21:y:2021:i:4:d:10.1007_s11067-021-09545-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.