IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v17y2017i2d10.1007_s11067-016-9335-9.html
   My bibliography  Save this article

Mixed Equilibria with Common Constraints on Transportation Networks

Author

Listed:
  • Xia Yang

    (Rensselaer Polytechnic Institute)

  • Xuegang Jeff Ban

    (University of Washington
    Shanghai Maritime University)

  • Rui Ma

    (University of California, Davis)

Abstract

This study concerns about modeling the mixed equilibrium (ME) problem, including user equilibrium, system optimum, and Cournot-Nash players, with general common constraints (CCs) on transportation networks. The CCs capture the interactions of the decision variables of different players in ME, which could be internal interactions such as road link capacity constraints or external such as emission or congestion control policies. It is shown that ME with CCs can be modeled as a generalized Nash equilibrium problem (GNEP). The study proves that, under certain conditions, the GNEP-based ME is jointly convex, which can be reformulated as a variational inequality (VI). We then study the solution existence, uniqueness and solving method for the VI-based model, followed by a discussion on its potential applications. Numerical tests are conducted with common nonlinear link emission constraints as the CCs on a simple two-node, three-link network first, and then on the Nguyen Dupus network. The results show that modeling users’ route choice behavior with CCs is more general in evaluating system performance, planning link capacities, and making congestion or emission control related policies.

Suggested Citation

  • Xia Yang & Xuegang Jeff Ban & Rui Ma, 2017. "Mixed Equilibria with Common Constraints on Transportation Networks," Networks and Spatial Economics, Springer, vol. 17(2), pages 547-579, June.
  • Handle: RePEc:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-016-9335-9
    DOI: 10.1007/s11067-016-9335-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-016-9335-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-016-9335-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick T. Harker, 1988. "Multiple Equilibrium Behaviors on Networks," Transportation Science, INFORMS, vol. 22(1), pages 39-46, February.
    2. Panayotis Christidis & Guillaume Leduc, 2009. "Longer and Heavier Vehicles for Freight Transport," JRC Research Reports JRC52005, Joint Research Centre.
    3. W. Szeto & Y. Jiang & D. Wang & A. Sumalee, 2015. "A Sustainable Road Network Design Problem with Land Use Transportation Interaction over Time," Networks and Spatial Economics, Springer, vol. 15(3), pages 791-822, September.
    4. Hai-Jun Huang & Tian-Liang Liu & Xiaolei Guo & Hai Yang, 2011. "Inefficiency of Logit-Based Stochastic User Equilibrium in a Traffic Network Under ATIS," Networks and Spatial Economics, Springer, vol. 11(2), pages 255-269, June.
    5. Sang Nguyen & Clermont Dupuis, 1984. "An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs," Transportation Science, INFORMS, vol. 18(2), pages 185-202, May.
    6. Yang, Hai & Zhang, Xiaoning & Meng, Qiang, 2007. "Stackelberg games and multiple equilibrium behaviors on networks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 841-861, October.
    7. Byung Chung & Hsun-Jung Cho & Terry Friesz & Henh Huang & Tao Yao, 2014. "Sensitivity Analysis of User Equilibrium Flows Revisited," Networks and Spatial Economics, Springer, vol. 14(2), pages 183-207, June.
    8. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    9. Bliemer, Michiel C. J. & Bovy, Piet H. L., 2003. "Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 501-519, July.
    10. He, Fang & Yin, Yafeng & Shirmohammadi, Nima & Nie, Yu (Marco), 2013. "Tradable credit schemes on networks with mixed equilibrium behaviors," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 47-65.
    11. ManWo Ng & Hong Lo, 2013. "Regional Air Quality Conformity in Transportation Networks with Stochastic Dependencies: A Theoretical Copula-Based Model," Networks and Spatial Economics, Springer, vol. 13(4), pages 373-397, December.
    12. Seungkyu Ryu & Anthony Chen & Xiangdong Xu & Keechoo Choi, 2014. "A Dual Approach for Solving the Combined Distribution and Assignment Problem with Link Capacity Constraints," Networks and Spatial Economics, Springer, vol. 14(2), pages 245-270, June.
    13. Nie, Yu & Zhang, H. M. & Lee, Der-Horng, 2004. "Models and algorithms for the traffic assignment problem with link capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 285-312, May.
    14. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    15. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    2. Fan, Rong & Ban, Xuegang (Jeff), 2022. "Commuting service platform: Concept and analysis," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 18-51.
    3. Judith Y. T. Wang & Richard D. Connors, 2018. "Urban Growth, Transport Planning, Air Quality and Health: A Multi-Objective Spatial Analysis Framework for a Linear Monocentric City," Networks and Spatial Economics, Springer, vol. 18(4), pages 839-874, December.
    4. Xiaozheng He & Hong Zheng & Srinivas Peeta & Yongfu Li, 2018. "Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning," Networks and Spatial Economics, Springer, vol. 18(4), pages 1027-1050, December.
    5. Yasushi Masuda & Akira Tsuji, 2019. "Congestion Control for a System with Parallel Stations and Homogeneous Customers Using Priority Passes," Networks and Spatial Economics, Springer, vol. 19(1), pages 293-318, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. (Walker) Wang, Wei & Wang, David Z.W. & Sun, Huijun & Feng, Zengzhe & Wu, Jianjun, 2016. "Braess Paradox of traffic networks with mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 95-114.
    2. Wang, Hua & Meng, Qiang & Zhang, Xiaoning, 2020. "Multiple equilibrium behaviors of auto travellers and a freight carrier under the cordon-based large-truck restriction regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    3. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2022. "Integrated path controlling and subsidy scheme for mobility and environmental management in automated transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    4. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    5. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    6. Yang, Hai & Zhang, Xiaoning, 2008. "Existence of anonymous link tolls for system optimum on networks with mixed equilibrium behaviors," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 99-112, February.
    7. Nie, Yu (Marco), 2017. "On the potential remedies for license plate rationing," Economics of Transportation, Elsevier, vol. 9(C), pages 37-50.
    8. Yasushi Masuda & Akira Tsuji, 2019. "Congestion Control for a System with Parallel Stations and Homogeneous Customers Using Priority Passes," Networks and Spatial Economics, Springer, vol. 19(1), pages 293-318, March.
    9. Huang, Hai-Jun & Li, Zhi-Chun, 2007. "A multiclass, multicriteria logit-based traffic equilibrium assignment model under ATIS," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1464-1477, February.
    10. Eikenbroek, Oskar A.L. & Still, Georg J. & van Berkum, Eric C., 2022. "Improving the performance of a traffic system by fair rerouting of travelers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 195-207.
    11. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    12. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    13. Fei Han & Jian Wang & Lingli Huang & Yan Li & Liu He, 2023. "Modeling Impacts of Implementation Policies of Tradable Credit Schemes on Traffic Congestion in the Context of Traveler’s Cognitive Illusion," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    14. Jiancheng Long & Hai-Jun Huang & Ziyou Gao & W. Y. Szeto, 2013. "An Intersection-Movement-Based Dynamic User Optimal Route Choice Problem," Operations Research, INFORMS, vol. 61(5), pages 1134-1147, October.
    15. Wang, Hua & Zhang, Xiaoning, 2016. "Joint implementation of tradable credit and road pricing in public-private partnership networks considering mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 158-170.
    16. Seungkyu Ryu, 2021. "Mode Choice Change under Environmental Constraints in the Combined Modal Split and Traffic Assignment Model," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    17. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    18. Xiang Zhang & David Rey & S. Travis Waller & Nathan Chen, 2019. "Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 19(2), pages 633-668, June.
    19. Siyu Chen & Ravi Seshadri & Carlos Lima Azevedo & Arun P. Akkinepally & Renming Liu & Andrea Araldo & Yu Jiang & Moshe E. Ben-Akiva, 2021. "Market Design for Tradable Mobility Credits," Papers 2101.00669, arXiv.org, revised Sep 2022.
    20. Roberto Cominetti & José R. Correa & Nicolás E. Stier-Moses, 2009. "The Impact of Oligopolistic Competition in Networks," Operations Research, INFORMS, vol. 57(6), pages 1421-1437, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:17:y:2017:i:2:d:10.1007_s11067-016-9335-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.