IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v42y2014i1p45-54.html
   My bibliography  Save this article

Stochastic frontier models with threshold efficiency

Author

Listed:
  • Sungwon Lee
  • Young Lee

Abstract

This paper proposes a tail-truncated stochastic frontier model that allows for the truncation of technical efficiency from below. The truncation bound implies the inefficiency threshold for survival. Specifically, this paper assumes a uniform distribution of technical inefficiency and derives the likelihood function. Even though this distributional assumption imposes a strong restriction that technical inefficiency has a uniform probability density over [0, θ], where θ is the threshold parameter, this model has two advantages: (1) the reduction in the number of parameters compared with more complicated tail-truncated models allows better performance in numerical optimization; and (2) it is useful for empirical studies of the distribution of efficiency or productivity, particularly the truncation of the distribution. The Monte Carlo simulation results support the argument that this model approximates the distribution of inefficiency precisely, as the data-generating process not only follows the uniform distribution but also the truncated half-normal distribution if the inefficiency threshold is small. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Sungwon Lee & Young Lee, 2014. "Stochastic frontier models with threshold efficiency," Journal of Productivity Analysis, Springer, vol. 42(1), pages 45-54, August.
  • Handle: RePEc:kap:jproda:v:42:y:2014:i:1:p:45-54
    DOI: 10.1007/s11123-013-0364-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-013-0364-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-013-0364-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    2. Timothy Dunne & Shawn Klimek & James Schmitz, Jr., 2010. "Competition and Productivity: Evidence from the Post WWII U.S. Cement Industry," Working Papers 10-29, Center for Economic Studies, U.S. Census Bureau.
    3. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
    4. David Good & M. Nadiri & Lars-Hendrik Röller & Robin Sickles, 1993. "Efficiency and productivity growth comparisons of European and U.S. Air carriers: A first look at the data," Journal of Productivity Analysis, Springer, vol. 4(1), pages 115-125, June.
    5. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    6. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    7. Qu Feng & William C. Horrace, 2012. "Alternative technical efficiency measures: Skew, bias and scale," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 253-268, March.
    8. Thomas J. Holmes & James A. Schmitz, 2010. "Competition and Productivity: A Review of Evidence," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 619-642, September.
    9. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    10. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    11. Chad Syverson, 2004. "Market Structure and Productivity: A Concrete Example," Journal of Political Economy, University of Chicago Press, vol. 112(6), pages 1181-1222, December.
    12. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    13. David A. Matsa, 2011. "Competition and Product Quality in the Supermarket Industry," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(3), pages 1539-1591.
    14. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    15. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Hoon Lee & Hayley Jang & Sun Ho Hwang, 2015. "Market Competition and Threshold Efficiency in the Sports Industry," Journal of Sports Economics, , vol. 16(8), pages 853-870, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Hoon Lee & Hayley Jang & Sun Ho Hwang, 2015. "Market Competition and Threshold Efficiency in the Sports Industry," Journal of Sports Economics, , vol. 16(8), pages 853-870, December.
    2. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    3. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.
    4. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    5. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    6. Julio Peña & Julio Aguirre & René Cerca D'amico, 2004. "Pesca demersal en Chile: eficiencia técnica y escalas de operación," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 119-160, June.
    7. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    8. Reddy, Mahendra, 2002. "Implication of Tenancy Status on Productivity and Efficiency: Evidence from Fiji," Sri Lankan Journal of Agricultural Economics, Sri Lanka Agricultural Economics Association (SAEA), vol. 4, pages 1-20.
    9. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    10. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    11. Wang, Wei Siang & Schmidt, Peter, 2009. "On the distribution of estimated technical efficiency in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 148(1), pages 36-45, January.
    12. Rien J. L. M. Wagenvoort & Paul H. Schure, 2006. "A Recursive Thick Frontier Approach to Estimating Production Efficiency," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(2), pages 183-201, April.
    13. Belén Iráizoz Apezteguía & Manuel Rapún Gárate, 1997. "Technical efficiency in the Spanish agrofood industry," Agricultural Economics, International Association of Agricultural Economists, vol. 17(2-3), pages 179-189, December.
    14. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    15. Gian Carlo Scarsi, 1999. "Local Electricity Distribution in Italy: Comparative Efficiency Analysis and Methodological Cross-Checking," Working Papers 1999.16, Fondazione Eni Enrico Mattei.
    16. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    17. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    18. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    19. Fernández, C. & Osiewalski, J. & Steel, M.F.J., 1996. "On the Use of Panel Data in Bayesian Stochastic Frontier Models," Other publications TiSEM d27e7bcf-bb16-457a-934a-a, Tilburg University, School of Economics and Management.
    20. Bernardo B. Andrade & Geraldo S. Souza, 2018. "Likelihood computation in the normal-gamma stochastic frontier model," Computational Statistics, Springer, vol. 33(2), pages 967-982, June.

    More about this item

    Keywords

    Stochastic frontier; Technical efficiency; Threshold inefficiency; Uniform distribution; Productivity distribution; C13; C21; D24; L11;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:42:y:2014:i:1:p:45-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.